The workability of fresh Portland cement (PC) concrete critically depends on the reaction of the cubic tricalcium aluminate (CA) phase in Ca- and S-rich pH >12 aqueous solution, yet its rate-controlling mechanism is poorly understood. In this article, the role of adsorption phenomena in CA dissolution in aqueous Ca-, S-, and polynaphthalene sulfonate (PNS)-containing solutions is analyzed. The zeta potential and pH results are consistent with the isoelectric point of CA occurring at pH ∼12 and do not show an inversion of its electric double layer potential as a function of S or Ca concentration, and PNS adsorbs onto CA, reducing its zeta potential to negative values at pH >12. The S and Ca K-edge X-ray absorption spectroscopy (XAS) data obtained do not indicate the structural incorporation or specific adsorption of SO on the partially dissolved CA solids analyzed. Together with supporting X-ray ptychography and scanning electron microscopy results, a model for CA dissolution inhibition in hydrated PC systems is proposed whereby the formation of an Al-rich leached layer and the complexation of Ca-S ion pairs onto this leached layer provide the key inhibiting effect(s). This model reconciles the results obtained here with the existing literature, including the inhibiting action of macromolecules such as PNS and polyphosphonic acids upon CA dissolution. Therefore, this article advances the understanding of the rate-controlling mechanism in hydrated CA and thus PC systems, which is important to better controlling the workability of fresh PC concrete.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.6b03474DOI Listing

Publication Analysis

Top Keywords

role adsorption
8
adsorption phenomena
8
cubic tricalcium
8
tricalcium aluminate
8
workability fresh
8
rate-controlling mechanism
8
zeta potential
8
hydrated systems
8
leached layer
8
phenomena cubic
4

Similar Publications

There is limited research on the influence of environmental variables on the interactions of biodegradable microplastics with chromium. This study reports the results of adsorption experiments with Cr and poly(lactic acid) (PLA) in synthetic aqueous solutions. It addresses the influence of the initial oxidation state, Cr(III) or Cr(VI), the effects of UV irradiation and the presence of organic matter.

View Article and Find Full Text PDF

Impact of residual aluminum on nanofiltration gypsum scaling: Mitigation roles played by different species.

Water Res

January 2025

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China. Electronic address:

Residual aluminum (Al) is a growing pollutant in nanofiltration (NF) membrane-based drinking water treatment. To investigate the impact of distinct Al species fouling layers on gypsum scaling during NF, gypsum scaling tests were conducted on bare and three Al-conditioned (AlCl-, Al, and Al-) membranes. The morphology of gypsum, the role of Al species on Ca adsorption during gypsum scaling, and the interactions between gypsum crystals and Al-conditioned membranes were investigated.

View Article and Find Full Text PDF

Efficient oxygen evolution reaction (OER) catalysts with fast kinetics, high efficiency, and stability are essential for scalable green production of hydrogen. The rational design and fabrication of catalysts play a decisive role in their catalytic behavior. This work presents a high-entropy catalyst, FeCoNiCuMo-O, synthesized via carbothermal shock.

View Article and Find Full Text PDF

Research on titanium nanotubes modified with metal sulfides, particularly bismuth sulfide (BiS), aims to create heterostructures that efficiently absorb sunlight and then separate photogenerated charge carriers, thereby enhancing the energy conversion efficiency. This study shows a key role of solvent used for sulfide and bismuth salt solutions used during successive ionic layer adsorption and reaction (SILAR) onto the morphology, structure, and photoresponse of the heterojunction where one element is represented by semitransparent titania nanotubes (gTiNT) and the second is BiS. Using 2-methoxyethanol and methanol during SILAR, results in remarkably photoactive 3D heterostructure and recorded photocurrents were 44 times higher compared to bare titania nanotubes.

View Article and Find Full Text PDF

First-principles study of CO and HO adsorption on the anatase TiO(101) surface: effect of Au doping.

Phys Chem Chem Phys

January 2025

Shanxi Coal International Energy Group Co., Ltd., Taiyuan 030000, China.

Photocatalytic reduction of CO will play a major role in future energy and environmental crisis. To investigate the adsorption mechanisms of CO and HO molecules involved in the catalytic process on the surface of anatase titanium dioxide 101 (TiO(101)) and the influence of Au atom doping on their adsorption, first-principles density functional theory calculations were used. The results show that 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!