Penta-graphene: A Promising Anode Material as the Li/Na-Ion Battery with Both Extremely High Theoretical Capacity and Fast Charge/Discharge Rate.

ACS Appl Mater Interfaces

The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China.

Published: December 2016

Recently, a new two-dimensional (2D) carbon allotrope named penta-graphene was theoretically proposed ( Zhang , S. ; et al. Proc. Natl. Acad. Sci. U.S.A. 2015 , 112 , 2372 ) and has been predicted to be the promising candidate for broad applications due to its intriguing properties. In this work, by using first-principles simulation, we have further extended the potential application of penta-graphene as the anode material for a Li/Na-ion battery. Our results show that the theoretical capacity of Li/Na ions on penta-graphene reaches up to 1489 mAh·g, which is much higher than that of most of the previously reported 2D anode materials. Meanwhile, the calculated low open-circuit voltages (from 0.24 to 0.60 V), in combination with the low diffusion barriers (≤0.33 eV) and the high electronic conductivity during the whole Li/Na ions intercalation processes, further show the advantages of penta-graphene as the anode material. Particularly, molecular dynamics simulation (300 K) reveals that Li ion could freely diffuse on the surface of penta-graphene, and thus the ultrafast Li ion diffusivity is expected. Superior performance of penta-graphene is further confirmed by comparing with the other 2D anode materials. The light weight and unique atomic arrangement (with isotropic furrow paths on the surface) of penta-graphene are found to be mainly responsible for the high Li/Na ions storage capacity and fast diffusivity. In this regard, except penta-graphene, many other recently proposed 2D metal-free materials with pentagonal Cairo-tiled structures may be the potential candidates as the Li/Na-ion battery anodes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.6b12727DOI Listing

Publication Analysis

Top Keywords

anode material
12
li/na-ion battery
12
li/na ions
12
penta-graphene
9
material li/na-ion
8
theoretical capacity
8
capacity fast
8
penta-graphene anode
8
anode materials
8
surface penta-graphene
8

Similar Publications

In recent years, the government has promoted the increased deployment of automated external defibrillators (AEDs) in public places with dense crowds, which is of great significance for ensuring that residents enjoy equal health rights. However, it is still unclear what factors decision-makers take into account when formulating deployment plans and whether these factors are related to local characteristics such as population distribution and socioeconomic conditions. Taking Shanghai, China as the research area, we adopted the kernel density estimation and spatial autocorrelation analysis to explore the spatial distribution characteristics of AEDs.

View Article and Find Full Text PDF

Intracellular electrophysiology is essential in neuroscience, cardiology, and pharmacology for studying cells' electrical properties. Traditional methods like patch-clamp are precise but low-throughput and invasive. Nanoelectrode Arrays (NEAs) offer a promising alternative by enabling simultaneous intracellular and extracellular action potential (iAP and eAP) recordings with high throughput.

View Article and Find Full Text PDF

Direct pacing of the mid myocardium where re-entry originates can be used to prevent ventricular arrhythmias and circumvent the need for painful defibrillation or cardiac ablation. However, there are no pacing electrodes small enough to navigate the coronary veins that cross these culprit scar regions. To address this need, we have developed an injectable ionically conductive hydrogel electrode that can fill the epicardial coronary veins and transform them into flexible electrodes.

View Article and Find Full Text PDF

Understanding the phase structure evolution and charge storage mechanism of FeCoNi-MOFs as electrodes for asymmetric supercapacitors.

J Colloid Interface Sci

January 2025

State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China. Electronic address:

Metal-organic frameworks (MOFs) due to abundant apertures, adjustable components, and multi-purpose structures have broad application prospects in supercapacitors. However, its low conductivity, poor stability, and difficulty growing evenly on the conductive substrate limit the electrochemical energy storage performance. Herein, with FeCoNi-OH nanosheets serving as the precursors, the trimetallic FeCoNi-MOF (FCNM) multilayer structure is successfully synthesized on activated carbon cloth (AC), and its optimal growth state (FCNM/AC-12 h) is achieved by regulating the reaction time.

View Article and Find Full Text PDF

Refining computer-assisted SEEG planning with spatial priors - A novel comparison of implantation strategies across adult and paediatric centres.

Neurophysiol Clin

January 2025

Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK; Department of Neurosurgery, Great Ormond Street Hospital for Children, London, WC1N 3JH, UK.

Objectives: Computer-assisted planning (CAP) allows faster SEEG planning and improves grey matter sampling, orthogonal drilling angles to the skull, reduces risk scores and minimises intracerebral electrode length. Incorporating prior SEEG trajectories enhances CAP planning, refining output with centre-specific practices. This study significantly expands on the previous work, compares priors libraries between two centres, and describes differences between SEEG in adults and children in these centres.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!