Correlative light and electron microscopy (CLEM) combines spatiotemporal information from fluorescence light microscopy (fLM) with high-resolution structural data from cryo-electron tomography (cryo-ET). These technologies provide opportunities to bridge knowledge gaps between cell and structural biology. Here we describe our protocol for correlated cryo-fLM, cryo-electron microscopy (cryo-EM), and cryo-ET (i.e., cryo-CLEM) of virus-infected or transfected mammalian cells. Mammalian-derived cells are cultured on EM substrates, using optimized conditions that ensure that the cells are spread thinly across the substrate and are not physically disrupted. The cells are then screened by fLM and vitrified before acquisition of cryo-fLM and cryo-ET images, which is followed by data processing. A complete session from grid preparation through data collection and processing takes 5-15 d for an individual experienced in cryo-EM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5385890PMC
http://dx.doi.org/10.1038/nprot.2016.168DOI Listing

Publication Analysis

Top Keywords

cryo-electron tomography
8
virus-infected transfected
8
transfected mammalian
8
mammalian cells
8
cells
5
correlated fluorescence
4
microscopy
4
fluorescence microscopy
4
microscopy cryo-electron
4
tomography virus-infected
4

Similar Publications

Molecular architectures of centrosomes in C. elegans embryos visualized by cryo-electron tomography.

Dev Cell

December 2024

Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; Cell Biology and Biophysics Unit, EMBL, 69117 Heidelberg, Germany. Electronic address:

Centrosomes organize microtubules that are essential for mitotic divisions in animal cells. They consist of centrioles surrounded by pericentriolar material (PCM). Questions related to mechanisms of centriole assembly, PCM organization, and spindle microtubule formation remain unanswered, partly due to limited availability of molecular-resolution structural data inside cells.

View Article and Find Full Text PDF

HIV is a lentivirus characterized by the formation of its mature core. Visualization and structural examination of HIV requires purification of virions to high concentrations. The yield and integrity of these virions are crucial for ensuring a uniform representation of all viral particles in subsequent analyses.

View Article and Find Full Text PDF

CryoSamba: Self-supervised deep volumetric denoising for cryo-electron tomography data.

J Struct Biol

December 2024

Program in Cellular and Molecular Medicine, Boston Children's Hospital, 200 Longwood Ave, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, USA. Electronic address:

Cryogenic electron tomography (cryo-ET) has rapidly advanced as a high-resolution imaging tool for visualizing subcellular structures in 3D with molecular detail. Direct image inspection remains challenging due to inherent low signal-to-noise ratios (SNR). We introduce CryoSamba, a self-supervised deep learning-based model designed for denoising cryo-ET images.

View Article and Find Full Text PDF

Segmentation is a critical data processing step in many applications of cryo-electron tomography. Downstream analyses, such as subtomogram averaging, are often based on segmentation results, and are thus critically dependent on the availability of open-source software for accurate as well as high-throughput tomogram segmentation. There is a need for more user-friendly, flexible, and comprehensive segmentation software that offers an insightful overview of all steps involved in preparing automated segmentations.

View Article and Find Full Text PDF

Automatic detection of alignment errors in cryo-electron tomography.

J Struct Biol

December 2024

Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Darwin, 3, Campus Universidad Autonoma, 28049 Cantoblanco, Madrid, Spain. Electronic address:

Cryo-electron tomography is an imaging technique that allows the study of the three-dimensional structure of a wide range of biological samples, from entire cellular environments to purified specimens. This technique collects a series of images from different views of the specimen by tilting the sample stage in the microscope. Subsequently, this information is combined into a three-dimensional reconstruction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!