Controlling the Messenger: Regulated Translation of Maternal mRNAs in Xenopus laevis Development.

Adv Exp Med Biol

Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, 440 Henry Mall, Madison, WI, 53706, USA.

Published: July 2017

The selective translation of maternal mRNAs encoding cell-fate determinants drives the earliest decisions of embryogenesis that establish the vertebrate body plan. This chapter will discuss studies in Xenopus laevis that provide insights into mechanisms underlying this translational control. Xenopus has been a powerful model organism for many discoveries relevant to the translational control of maternal mRNAs because of the large size of its oocytes and eggs that allow for microinjection of molecules and the relative ease of manipulating the oocyte to egg transition (maturation) and fertilization in culture. Consequently, many key studies have focused on the expression of maternal mRNAs during the oocyte to egg transition (the meiotic cell cycle) and the rapid cell divisions immediately following fertilization. This research has made seminal contributions to our understanding of translational regulatory mechanisms, but while some of the mRNAs under consideration at these stages encode cell-fate determinants, many encode cell cycle regulatory proteins that drive these early cell cycles. In contrast, while maternal mRNAs encoding key developmental (i.e., cell-fate) regulators that function after the first cleavage stages may exploit aspects of these foundational mechanisms, studies reveal that these mRNAs must also rely on distinct and, as of yet, incompletely understood mechanisms. These findings are logical because the functions of such developmental regulatory proteins have requirements distinct from cell cycle regulators, including becoming relevant only after fertilization and then only in specific cells of the embryo. Indeed, key maternal cell-fate determinants must be made available in exquisitely precise amounts (usually low), only at specific times and in specific cells during embryogenesis. To provide an appreciation for the regulation of maternal cell-fate determinant expression, an overview of the maternal phase of Xenopus embryogenesis will be presented. This section will be followed by a review of translational mechanisms operating in oocytes, eggs, and early cleavage-stage embryos and conclude with a discussion of how the regulation of key maternal cell-fate determinants at the level of translation functions in Xenopus embryogenesis. A key theme is that the molecular asymmetries critical for forming the body axes are established and further elaborated upon by the selective temporal and spatial regulation of maternal mRNA translation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5652302PMC
http://dx.doi.org/10.1007/978-3-319-46095-6_2DOI Listing

Publication Analysis

Top Keywords

maternal mrnas
20
cell-fate determinants
16
cell cycle
12
maternal cell-fate
12
maternal
10
translation maternal
8
xenopus laevis
8
mrnas encoding
8
translational control
8
oocytes eggs
8

Similar Publications

Upregulated YTHDC1 mediates trophoblastic dysfunction inducing preterm birth in ART conceptions through enhanced RPL37 translation.

Cell Mol Life Sci

December 2024

The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, 910# Hengshan Road, Shanghai, China.

Assisted reproductive technology (ART) pregnancies present a higher risk of singleton preterm birth than natural pregnancies, but the underlying molecular mechanism remains largely unknown. RNA mA modification is a key epigenetic mechanism regulating cellular function, but the role of mA modification, especially its "reader" YTHDC1, in preterm delivery remains undefined. To delineate the role and epigenetic mechanism of mA modification in ART preterm delivery, the effects of YTHDC1 on trophoblastic function were evaluated by CCK-8, EdU, Transwell, and flow cytometry analyses post its overexpression or knockdown.

View Article and Find Full Text PDF

ITGB3 is reduced in pregnancies with preeclampsia and its influence on biological behavior of trophoblast cells.

Mol Med

December 2024

Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, No.123, Tianfeixiang, Mochou Rd, Nanjing, 210004, China.

Background: Preeclampsia (PE) is a serious pregnancy complication associated with impaired trophoblast function. Integrin β3 (ITGB3) is a cell adhesion molecule that plays a role in cell movement. The objective of this study was to identify the biological function and expression level of ITGB3 in PE.

View Article and Find Full Text PDF

Timely and accurate translation of maternal mRNA is essential for oocyte maturation and early embryonic development. Previous studies have highlighted the importance of Primordial Germ cell 7 (PGC7) as a maternal factor in maintaining DNA methylation of maternally imprinted loci in zygotes. However, it is still unknown whether PGC7 is involved in the regulation of Maternal mRNA Translation.

View Article and Find Full Text PDF

Maternal exercise programs placental miR-495-5p-mediated Snx7 expression and kynurenic acid metabolic pathway induced by prenatal high-fat diet: based on miRNA-seq, transcriptomics, and metabolomics.

J Nutr Biochem

December 2024

Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China. Electronic address:

Poor intrauterine environments increase the prevalence for chronic metabolic diseases in offspring, whereas maternal exercise is an effective measure to break this vicious intergenerational cycle. Placenta is increasingly being studied to explore its role in maternal-fetal metabolic cross-talk. The association between placental miRNA and offspring development trajectories has been established, yet the specific role and mechanism thereof in maternal exercise-induced metabolic protection remain elusive.

View Article and Find Full Text PDF

Quality control of translation is crucial for maintaining cellular and organismal homeostasis. Obstacles in translation elongation induce ribosome collision, which is monitored by multiple sensor mechanisms in eukaryotes. The E3 ubiquitin ligase Znf598 recognizes collided ribosomes, triggering ribosome-associated quality control (RQC) to rescue stalled ribosomes and no-go decay (NGD) to degrade stall-prone mRNAs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!