High performance liquid chromatography (HPLC) is currently one of the most powerful analytical tools that has revolutionized the field of proteomics. Formerly known as high pressure liquid chromatography, this technique was introduced in the early 1960s to improve the efficiency of liquid chromatography separations using small stationary phase particles packed in columns. Since its introduction, continued advancements in column technology, development of different stationary phase materials and improved instrumentation has allowed the full potential of this technique to be realized. The various modes of HPLC in combination with mass spectrometry has evolved into the principal analytical technique in proteomics. It is now common practice to combine different types of HPLC in a multidimensional workflow to identify and quantify peptides and proteins with high sensitivity and resolution from limited amounts of samples. More recently, the introduction of Ultra High Performance Liquid Chromatography (UHPLC) has further raised the level of performance of this technique with significant increases in resolution, speed and sensitivity. The number of applications of HPLC and UHPLC in proteomics has been rapidly expanding and will continue to be a pivotal analytical technique. The aim of the following sections is to familiarize the beginner with the various HPLC methods routinely used in proteomics and provide sufficient practical knowledge regarding each of them to develop a separation and analytical protocol.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-319-41448-5_5DOI Listing

Publication Analysis

Top Keywords

liquid chromatography
16
high performance
8
performance liquid
8
stationary phase
8
analytical technique
8
chromatography
5
hplc
5
technique
5
improving proteome
4
proteome coverage
4

Similar Publications

The main objective of this prospective, multicenter study (REVEAL-CP) was to test children with cerebral palsy-like signs and symptoms for raised 3--methyldopa (3-OMD) blood levels, a biomarker for aromatic L-amino acid decarboxylase deficiency (AADCd). A secondary objective was to characterize the molecular basis for the defective aromatic L-amino acid decarboxylase (AADC) gene product. Patients were identified in pediatric secondary and tertiary care hospitals through database searches and personal communication.

View Article and Find Full Text PDF

The distribution and bioaccumulation of environmental pollutants are essential to understanding their toxicological mechanism. However, achieving spatial resolution at the subtissue level is still challenging. Perfluorooctanesulfonate (PFOS) is a persistent environmental pollutant with widespread occurrence.

View Article and Find Full Text PDF

Ergothioneine, a New Acrolein Scavenger at Elevated Temperature.

J Agric Food Chem

January 2025

Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2# Xuelin Road, Nanjing 210023, People's Republic of China.

Acrolein (ACR) present in vivo and in vitro can damage proteins and DNA, linking it to various chronic diseases. In this paper, ergothioneine (EGT), abundant in edible mushrooms, has been studied for its ability to trap ACR and its reaction pathway with ACR at high temperatures using ultraperformance liquid chromatography-mass spectrometry (UPLC-MS/MS). We synthesized the adducts (EGT-ACR-1 and EGT-ACR-2), elucidating their structure and reaction site through HRMS and nuclear magnetic resonance.

View Article and Find Full Text PDF

Antibacterial screening of endophytic fungi from Salacia intermedia identified Diaporthe longicolla as a potent strain exhibiting good activity against multidrug-resistant Staphylococcus aureus and Pseudomonas aeruginosa, with an MIC of 39.1 µg/mL. Scale-up fermentation and chromatographic purification of this strain yielded three known compounds, which were cytochalasin J (1), cytochalasin H (2), and dicerandrol C (3), as identified by liquid chromatography - high mass resolution mass spectrometry (LC-HRMS) and nuclear magnetic resonance (NMR) spectroscopy.

View Article and Find Full Text PDF

A Non-Centrifugation Method to Concentrate and Purify Extracellular Vesicles Using Superabsorbent Polymer Followed by Size Exclusion Chromatography.

J Extracell Vesicles

January 2025

Department of Internal Medicine and Clinical Nutrition, Krefting Research Centre, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.

Extracellular vesicles (EVs) can be isolated and purified from cell cultures and biofluids using different methodologies. Here, we explored a novel EV isolation approach by combining superabsorbent polymers (SAP) in a dialysis membrane with size exclusion chromatography (SEC) to achieve high concentration and purity of EVs without the use of ultracentrifugation (UC). Suspension HEK293 cells transfected with CD63 coupled with Thermo Luciferase were used to quantify the EV yield and purity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!