The control over the crystallinity of chitosan and chitosan/ovalbumin films can be achieved via an appropriate balance of the hydrophilic/hydrophobic interactions during the film formation process, which then controls the release kinetics of ovalbumin. Chitosan films were prepared by solvent casting. The presence of the anhydrous allomorph can be viewed as a probe of the hydrophobic conditions at the neutralization step. The semicrystalline structure, the swelling behavior of the films, the protein/chitosan interactions, and the release behavior of the films were impacted by the DA and the film processing parameters. At low DAs, the chitosan films neutralized in the solid state corresponded to the most hydrophobic environment, inducing the crystallization of the anhydrous allomorph with and without protein. The most hydrophilic conditions, leading to the hydrated allomorph, corresponded to non-neutralized films for the highest DAs. For the non-neutralized chitosan acetate (amorphous) films, the swelling increased when the DA decreased, whereas for the neutralized chitosan films, the swelling decreased. The in vitro release of ovalbumin (model protein) from chitosan films was controlled by their swelling behavior. For fast swelling films (DA = 45%), a burst effect was observed. On the contrary, a lag time was evidenced for DA = 2.5% with a limited release of the protein. Furthermore, by blending chitosans (DA = 2.5% and 45%), the release behavior was improved by reducing the burst effect and the lag time. The secondary structure of ovalbumin was partially maintained in the solid state, and the ovalbumin was released under its native form.

Download full-text PDF

Source
http://dx.doi.org/10.1208/s12249-016-0678-9DOI Listing

Publication Analysis

Top Keywords

chitosan films
20
release behavior
12
films
11
anhydrous allomorph
8
swelling behavior
8
behavior films
8
solid state
8
films swelling
8
lag time
8
chitosan
7

Similar Publications

In this study, biopolymer composites based on chitosan (CS) with enhanced optical properties were functionalized using Manganese metal complexes and black tea solution dyes. The results indicate that CS with Mn-complexes can produce polymer hybrids with high absorption, high refractive index and controlled optical band gaps, with a significant reduction from 6.24 eV to 1.

View Article and Find Full Text PDF

Structure and properties of chitosan plasticized with hydrophobic short-chain fatty acid cosolvent.

Int J Biol Macromol

January 2025

Research Institute of Interdisciplinary Science, School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China; Guangdong Provincial Key Laboratory of Extreme Conditions, Dongguan 523803, China. Electronic address:

The application of chitosan in packaging has always been limited due to its brittle and hygroscopic nature. In this study, hydrophobic short-chain fatty acids (SCFAs) were utilized to modify chitosan to overcome this issue. For the first time, hydrophobic SCFAs, typically hexanoic acid and its homologs, were found to be able to dissolve chitosan in water as well as its hydrophilic analog.

View Article and Find Full Text PDF

: This study aimed to evaluate the safety and efficacy of chitosan-based bioadhesive films for facilitating the topical delivery of curcumin in skin cancer treatment, addressing the pharmacokinetic limitations associated with oral administration. : The films, which incorporated curcumin, were formulated using varying proportions of chitosan, polyvinyl alcohol, Poloxamer 407, and propylene glycol. These films were assessed for stability, drug release, in vitro skin permeation, cell viability (with and without radiotherapy), and skin irritation.

View Article and Find Full Text PDF

This study presents the fabrication of a sustainable flexible humidity sensor utilizing chitosan derived from mealworm biomass as the primary sensing material. The chitosan-based humidity sensor was fabricated by casting chitosan and polyvinyl alcohol (PVA) films with interdigitated copper electrodes, forming a laminate composite suitable for real-time, resistive-type humidity detection. Comprehensive characterization of the chitosan film was performed using Fourier-transform infrared (FTIR) spectroscopy, contact angle measurements, and tensile testing, which confirmed its chemical structure, wettability, and mechanical stability.

View Article and Find Full Text PDF

Films Based on Chitosan/Konjac Glucomannan Blend Containing Resveratrol for Potential Skin Application.

Materials (Basel)

January 2025

Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 7 Gagarin Street, 87-100 Torun, Poland.

Biopolymers represent a significant class of materials with potential applications in skin care due to their beneficial properties. Resveratrol is a natural substance that exhibits a range of biological activities, including the scavenging of free radicals and anti-inflammatory and anti-aging effects. In this study, chitosan/konjac glucomannan resveratrol-enriched thin films were prepared.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!