The fact that the identity of the cells that initiate metastasis in most human cancers is unknown hampers the development of antimetastatic therapies. Here we describe a subpopulation of CD44 cells in human oral carcinomas that do not overexpress mesenchymal genes, are slow-cycling, express high levels of the fatty acid receptor CD36 and lipid metabolism genes, and are unique in their ability to initiate metastasis. Palmitic acid or a high-fat diet specifically boosts the metastatic potential of CD36 metastasis-initiating cells in a CD36-dependent manner. The use of neutralizing antibodies to block CD36 causes almost complete inhibition of metastasis in immunodeficient or immunocompetent orthotopic mouse models of human oral cancer, with no side effects. Clinically, the presence of CD36 metastasis-initiating cells correlates with a poor prognosis for numerous types of carcinomas, and inhibition of CD36 also impairs metastasis, at least in human melanoma- and breast cancer-derived tumours. Together, our results indicate that metastasis-initiating cells particularly rely on dietary lipids to promote metastasis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nature20791 | DOI Listing |
Cancer Biol Med
December 2024
Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), School of Clinical Medicine, Hangzhou Medical College, Hangzhou 310014, China.
Pulmonary metastasis is a life-threatening complication for patients with hepatocellular carcinoma (HCC) undergoing liver transplantation (LT). In addition to the common mechanisms underlying tumor metastasis, another inevitable factor is that the application of immunosuppressive agents, including calcineurin inhibitors (CNIs) and rapamycin inhibitors (mTORis), after transplantation could influence tumor recurrence and metastasis. In recent years, several studies have reported that mTORis, unlike CNIs, have the capacity to modulate the tumorigenic landscape post-liver transplantation by targeting metastasis-initiating cells and reshaping the pulmonary microenvironment.
View Article and Find Full Text PDFInt J Nanomedicine
November 2024
National Research Council, Institute of Genetics and Biophysics, Naples, 80131, Italy.
Background: Metastasis-initiating cells are key players in progression, resistance, and relapse of colorectal cancer (CRC), by leveraging the regulatory relationship between Transforming Growth Factor-beta (TGF-β) signaling and anti-L1 cell adhesion molecule (L1CAM).
Methods: This study introduces a novel strategy for CRC targeted therapy and imaging based on the use of a hybrid nanosystem made of gold nanoparticles-covered porous biosilica further modified with the (L1CAM) antibody.
Results: The nanosystem intracellularly delivers galunisertib (LY), a TGF-β inhibitor, aiming to inhibit epithelial-mesenchymal transition (EMT), a process pivotal for metastasis.
Int J Med Sci
September 2024
College & Hospital of Stomatology, Guangxi Medical University, Nanning 530021, P. R. China.
The analysis of single-cell transcriptome profiling of tumour tissue isolates helps to identify heterogeneous tumour cells, neighbouring stromal cells and immune cells. Local metastasis of lymph nodes is the most dominant and influential biological behaviors of oral squamous cell carcinoma (OSCC) in terms of treatment prognosis. Understanding metastasis initiation and progression is important for the discovery of new treatments for OSCC and prediction of clinical responses to immunotherapy.
View Article and Find Full Text PDFExp Cell Res
September 2024
Cancer Research, Rajiv Gandhi Centre for Biotechnology (BRIC-RGCB), Thiruvananthapuram, Kerala, 695014, India; Regional Centre for Biotechnology, Faridabad, Haryana 121001, India. Electronic address:
Since metastasis accounts for the majority of cancer morbidity and mortality, attempts are focused to block metastasis and metastasis initiating cellular programs. It is generally believed that hypoxia, reactive oxygen species (ROS) and the dysregulated redox pathways regulate metastasis. Although induction of epithelial to mesenchymal transition (EMT) can initiate cell motility to different sites other than the primary site, the initiation of a secondary tumor at a distant site depends on self-renewal property of cancer stem cell (CSC) property.
View Article and Find Full Text PDFOncogene
September 2024
Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!