Th17 cells play critical roles in host defense and autoimmunity. Emerging data support a role for Notch signaling in Th17 cell differentiation but whether it is a positive or negative regulator remains unclear. We report here that T cell-specific deletion of Notch receptors enhances Th17 cell differentiation in the gut, with a corresponding increase in IL-17 secretion. An increase in Th17 cell frequency was similarly observed following immunization of T cell specific Notch mutant mice with OVA/CFA. However, in this setting, Th17 cytokine secretion was impaired, and increased intracellular retention of IL-17 was observed. Intracellular IL-17 co-localized with the CD71 iron transporter in the draining lymph node of both control and Notch-deficient Th17 cells. Immunization induced CD71 surface expression in control, but not in Notch-deficient Th17 cells, revealing defective CD71 intracellular transport in absence of Notch signaling. Moreover, Notch receptor deficient Th17 cells had impaired mTORC2 activity. These data reveal a context-dependent impact of Notch on vesicular transport during high metabolic demand suggesting a role for Notch signaling in the bridging of T cell metabolic demands and effector functions. Collectively, our findings indicate a prominent regulatory role for Notch signaling in the fine-tuning of Th17 cell differentiation and effector function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5156918 | PMC |
http://dx.doi.org/10.1038/srep39117 | DOI Listing |
BMC Surg
January 2025
General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
Background And Aim: Hepatocellular carcinoma (HCC) is a highly immunogenic tumor and the third leading cause of cancer-related deaths worldwide with an increasing incidence. Therefore, the combination of immunotherapy with other approaches, such as anti-angiogenic agents and local area therapy, has become a new strategy for HCC treatment.
Methods: We searched PubMed and Web of Science and extracted publications relating to the radiofrequency ablation (RFA) and immunotherapy.
Trends Immunol
January 2025
Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Nanhai Clinical Translational Center, Sun Yat-sen Memorial Hospital, Foshan, China; Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Zenith Institute of Medical Sciences, Guangzhou 510120, China. Electronic address:
Chronic inflammatory diseases show significant heterogeneity in their phenotypes, with diverse immune cells and mediators interacting in response to various stimuli. This review proposes the concept of the 'inflammazone' framework - which maps the distribution of immune components driving disease pathogenesis - using sarcoidosis and psoriasis as examples. Sarcoidosis features granulomatous inflammation with macrophages and CD4 T cells, which can spread to lymph nodes and other organs.
View Article and Find Full Text PDFCytokine Growth Factor Rev
January 2025
MCW Cancer Center and Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, USA; WIN Consortium, Paris, France; University of Nebraska, Lincoln, NE, USA. Electronic address:
IL-17A, referred to as IL-17, is the founding member of a family of pro-inflammatory cytokines, including IL-17B, IL-17C, IL-17D, IL-17E (or IL-25), and IL-17F, which act via receptors IL-17RA to IL-17RE, and elicit potent cellular responses that impact diverse diseases. IL-17's interactions with various cytokines include forming a heterodimer with IL-17F and being stimulated by IL-23's activation of Th17 cells, which can lead to inflammation and autoimmunity. IL-17 is implicated in infectious diseases and inflammatory disorders such as rheumatoid arthritis and psoriasis, promoting neutrophil recruitment and anti-bacterial immunity, but potentially exacerbating fungal and viral infections, revealing its dual role as protective and pathologic.
View Article and Find Full Text PDFCytokine
January 2025
Department of Molecular Biology and Bioinformatics, Tripura University, Agartala, India. Electronic address:
Transforming growth factor-beta (TGF-β), displaying a dual role in immunosuppression and pathogenesis, has emerged as a key regulator of anti-leishmanial immune responses. In Leishmania infections, TGF-β drives immune deviation by enhancing regulatory T-cell (T-reg) differentiation and inhibiting macrophage activation, suppressing critical antiparasitic responses. This cytokine simultaneously promotes fibroblast proliferation, extracellular matrix production, and fibrosis in infected tissues, which aids in wound healing but impedes immune cell infiltration, particularly in visceral leishmaniasis, where splenic disorganization and compromised immune access are notable.
View Article and Find Full Text PDFRheumatology (Oxford)
January 2025
Department of Rheumatology and Immunology and Beijing Key Laboratory for Rheumatism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, 100044, China.
Objectives: The objective of this study was to evaluate the efficacy and safety of tofacitinib in the treatment of active dermatomyositis (DM) and anti-synthetase syndrome (ASS).
Methods: Tofacitinib was administered at a dose of 5 mg twice daily to patients who exhibited inadequate response to conventional treatments. The primary end point was the reduction of T follicular helper (Tfh) cells at week 24.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!