A seven-subunit Sm protein ring assembles around specific U-rich RNA segments of the U1, U2, U4, and U5 snRNPs that direct pre-mRNA splicing. Using human snRNP crystal structures to guide mutagenesis in , we gained new insights into structure-function relationships of the SmD1 and SmD2 subunits. Of 18 conserved amino acids comprising their RNA-binding sites or intersubunit interfaces, only Arg88 in SmD1 and Arg97 in SmD2 were essential for growth. Tests for genetic interactions with non-Sm splicing factors identified benign mutations of SmD1 (, , ) and SmD2 (, , , ) that were synthetically lethal with null alleles of U2 snRNP subunits Lea1 and/or Msl1. Tests of 264 pairwise combinations of SmD1 and SmD2 alleles with each other and with a collection of SmG, SmE, SmF, SmB, and SmD3 alleles revealed 92 instances of inter-Sm synthetic lethality. We leveraged the Sm mutant collection to illuminate the function of the yeast Sm assembly factor Brr1 and its relationship to the metazoan Sm assembly factor Gemin2. Mutations in the adjacent SmE (), SmF (, , ), SmD2 (, , , , ), and SmD1 (, ) subunits-but none in the SmG, SmD3, and SmB subunits-were synthetically lethal with Δ. Using complementation of Δ lethality in two Sm mutant backgrounds as an in vivo assay of Brr1 activity, we identified as essential an N-terminal segment of Brr1 (amino acids 24-47) corresponding to the Gemin2 α1 helix that interacts with SmF and a Brr1 C-terminal peptide (QKDLIE) that, in Gemin2, interacts with SmD2.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5311505PMC
http://dx.doi.org/10.1261/rna.059881.116DOI Listing

Publication Analysis

Top Keywords

assembly factor
12
smd1 smd2
12
protein ring
8
factor brr1
8
amino acids
8
synthetically lethal
8
sme smf
8
smd2
6
brr1
5
smd1
5

Similar Publications

The direct electrochemical conversion of bicarbonate solutions (i.e., captured CO) has emerged as a sustainable approach for integrating CO capture and utilization compared to the traditional independent and sequential route.

View Article and Find Full Text PDF

WD repeat domain 77 protein (WDR77), a WD-40 domain-containing protein, is a crucial regulator of cellular pathways in cancer progression. While much of the past research on WDR77 has focused on its interaction with PRMT5 in histone methylation, WDR77's regulatory functions extend beyond this pathway, influencing diverse mechanisms such as mRNA translation, chromatin assembly, cell cycle regulation, and apoptosis. WDR77 is a key regulator of cell cycle progression, regulating the transition from the G1 phase.

View Article and Find Full Text PDF

Epidemiological studies suggest an increased risk of colorectal cancer (CRC) aggravation in patients with chronic kidney disease (CKD). Our previous study demonstrated that indoxyl sulfate, a uremic toxin whose concentration increases with CKD progression, exacerbates CRC through activation of the AhR and Akt pathways. Consequently, indoxyl sulfate has been proposed to be a significant link between CKD progression and CRC aggravation.

View Article and Find Full Text PDF

Background: Drought is a major limiting factor for plant survival and crop productivity. Stylosanthes angustifolia, a pioneer plant, exhibits remarkable drought tolerance, yet the molecular mechanisms driving its drought resistance remain largely unexplored.

Results: We present a chromosome-scale reference genome of S.

View Article and Find Full Text PDF

Mountains with complex terrain and steep environmental gradients are biodiversity hotspots such as the eastern Tibetan Plateau (TP). However, it is generally assumed that mountain terrain plays a secondary role in plant species assembly on a millennial time-scale compared to climate change. Here, we investigate plant richness and community changes during the last 18,000 years at two sites: Lake Naleng and Lake Ximen on the eastern TP with similar elevation and climatic conditions but contrasting terrain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!