Unlabelled: Atypical multisensory integration is an understudied cognitive symptom in schizophrenia. Procedures to evaluate multisensory integration in rodent models are lacking. We developed a novel multisensory object oddity (MSO) task to assess multisensory integration in ketamine-treated rats, a well established model of schizophrenia. Ketamine-treated rats displayed a selective MSO task impairment with tactile-visual and olfactory-visual sensory combinations, whereas basic unisensory perception was unaffected. Orbitofrontal cortex (OFC) administration of nicotine or ABT-418, an αβ nicotinic acetylcholine receptor (nAChR) agonist, normalized MSO task performance in ketamine-treated rats and this effect was blocked by GABA receptor antagonism. GABAergic currents were also decreased in OFC of ketamine-treated rats and were normalized by activation of αβ nAChRs. Furthermore, parvalbumin (PV) immunoreactivity was decreased in the OFC of ketamine-treated rats. Accordingly, silencing of PV interneurons in OFC of PV-Cre mice using DREADDs (Designer Receptors Exclusively Activated by Designer Drugs) selectively impaired MSO task performance and this was reversed by ABT-418. Likewise, clozapine-N-oxide-induced inhibition of PV interneurons in brain slices was reversed by activation of αβ nAChRs. These findings strongly imply a role for prefrontal GABAergic transmission in the integration of multisensory object features, a cognitive process with relevance to schizophrenia. Accordingly, nAChR agonism, which improves various facets of cognition in schizophrenia, reversed the severe MSO task impairment in this study and appears to do so via a GABAergic mechanism. Interactions between GABAergic and nAChR receptor systems warrant further investigation for potential therapeutic applications. The novel behavioral procedure introduced in the current study is acutely sensitive to schizophrenia-relevant cognitive impairment and should prove highly valuable for such research.

Significance Statement: Adaptive behaviors are driven by integration of information from different sensory modalities. Multisensory integration is disrupted in patients with schizophrenia, but little is known about the neural basis of this cognitive symptom. Development and validation of multisensory integration tasks for animal models is essential given the strong link between functional outcome and cognitive impairment in schizophrenia. We present a novel multisensory object oddity procedure that detects selective multisensory integration deficits in a rat model of schizophrenia using various combinations of sensory modalities. Moreover, converging data are consistent with a nicotinic-GABAergic mechanism of multisensory integration in the prefrontal cortex, results with strong clinical relevance to the study of cognitive impairment and treatment in schizophrenia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6705662PMC
http://dx.doi.org/10.1523/JNEUROSCI.1628-16.2016DOI Listing

Publication Analysis

Top Keywords

multisensory integration
32
mso task
20
ketamine-treated rats
20
novel multisensory
12
multisensory object
12
cognitive impairment
12
integration
10
multisensory
10
schizophrenia
9
rodent models
8

Similar Publications

Flavor is the quintessential multisensory experience, combining gustatory, retronasal olfactory, and texture qualities to inform food perception and consumption behavior. However, the computations that govern multisensory integration of flavor components and their underlying neural mechanisms remain elusive. Here, we use rats as a model system to test the hypothesis that taste and smell components of flavor are integrated in a reliability-dependent manner to inform hedonic judgments and that this computation is performed by neurons in the primary taste cortex.

View Article and Find Full Text PDF

Intermodulation frequencies reveal common neural assemblies integrating facial and vocal fearful expressions.

Cortex

December 2024

Institute of Research in Psychology (IPSY) & Institute of Neuroscience (IoNS), Louvain Bionics Center, University of Louvain (UCLouvain), Louvain-la-Neuve, Belgium; School of Health Sciences, HES-SO Valais-Wallis, The Sense Innovation and Research Center, Lausanne & Sion, Switzerland. Electronic address:

Effective social communication depends on the integration of emotional expressions coming from the face and the voice. Although there are consistent reports on how seeing and hearing emotion expressions can be automatically integrated, direct signatures of multisensory integration in the human brain remain elusive. Here we implemented a multi-input electroencephalographic (EEG) frequency tagging paradigm to investigate neural populations integrating facial and vocal fearful expressions.

View Article and Find Full Text PDF

Linking Adult Olfactory Neurogenesis to Social Reproductive Stimuli: Mechanisms and Functions.

Int J Mol Sci

December 2024

Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy.

Over the last three decades, adult neurogenesis in mammals has been a central focus of neurobiological research, providing insights into brain plasticity and function. However, interest in this field has recently waned due to challenges in translating findings into regenerative applications and the ongoing debate about the persistence of this phenomenon in the adult human brain. Despite these hurdles, significant progress has been made in understanding how adult neurogenesis plays a critical role in the adaptation of brain circuits to environmental stimuli regulating key brain functions.

View Article and Find Full Text PDF

Movie-watching is a central aspect of our lives and an important paradigm for understanding the brain mechanisms behind cognition as it occurs in daily life. Contemporary views of ongoing thought argue that the ability to make sense of events in the 'here and now' depend on the neural processing of incoming sensory information by auditory and visual cortex, which are kept in check by systems in association cortex. However, we currently lack an understanding of how patterns of ongoing thoughts map onto the different brain systems when we watch a film, partly because methods of sampling experience disrupt the dynamics of brain activity and the experience of movie-watching.

View Article and Find Full Text PDF

An organic electrochemical neuron for a neuromorphic perception system.

Proc Natl Acad Sci U S A

January 2025

Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, IL 60208.

Human perception systems are highly refined, relying on an adaptive, plastic, and event-driven network of sensory neurons. Drawing inspiration from Nature, neuromorphic perception systems hold tremendous potential for efficient multisensory signal processing in the physical world; however, the development of an efficient artificial neuron with a widely calibratable spiking range and reduced footprint remains challenging. Here, we report an efficient organic electrochemical neuron (OECN) with reduced footprint (<37 mm) based on high-performance vertical OECT (vOECT) complementary circuitry enabled by an advanced n-type polymer for balanced p-/n-type vOECT performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!