The World Health Organization estimates that nearly 500 million malaria tests are performed annually. While microscopy and rapid diagnostic tests (RDTs) are the main diagnostic approaches, no single method is inexpensive, rapid, and highly accurate. Two recent studies from our group have demonstrated a prototype computer vision platform that meets those needs. Here we present the results from two clinical studies on the commercially available version of this technology, the Sight Diagnostics Parasight platform, which provides malaria diagnosis, species identification, and parasite quantification. We conducted a multisite trial in Chennai, India (Apollo Hospital [ = 205]), and Nairobi, Kenya (Aga Khan University Hospital [ = 263]), in which we compared the device to microscopy, RDTs, and PCR. For identification of malaria, the device performed similarly well in both contexts (sensitivity of 99% and specificity of 100% at the Indian site and sensitivity of 99.3% and specificity of 98.9% at the Kenyan site, compared to PCR). For species identification, the device correctly identified 100% of samples with and 100% of samples with in India and 100% of samples with and 96.1% of samples with in Kenya, compared to PCR. Lastly, comparisons of the device parasite counts with those of trained microscopists produced average Pearson correlation coefficients of 0.84 at the Indian site and 0.85 at the Kenyan site.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5328444PMC
http://dx.doi.org/10.1128/JCM.02155-16DOI Listing

Publication Analysis

Top Keywords

100% samples
12
parasight platform
8
platform malaria
8
malaria diagnosis
8
species identification
8
indian site
8
kenyan site
8
compared pcr
8
evaluation parasight
4
malaria
4

Similar Publications

Power-free plasma separation based on negative magnetophoresis for rapid biochemical analysis.

Microsyst Nanoeng

December 2024

Research Center for Bionic Sensing and Intelligence, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China.

We present a versatile platform for label-free magnetic separation of plasma, tailored to accommodate diverse environments. This innovative device utilizes an advanced long-short alternating double Halbach magnetic array, specifically engineered for optimal magnetic separation. The array's adaptability allows for seamless integration with separation channels of varying sizes, enabling static separation of whole blood.

View Article and Find Full Text PDF

Understanding Parkinson's: The microbiome and machine learning approach.

Maturitas

December 2024

Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Universiteitsweg 99, Utrecht 3508 TB, the Netherlands.

Objective: Given that Parkinson's disease is a progressive disorder, with symptoms that worsen over time, our goal is to enhance the diagnosis of Parkinson's disease by utilizing machine learning techniques and microbiome analysis. The primary objective is to identify specific microbiome signatures that can reproducibly differentiate patients with Parkinson's disease from healthy controls.

Methods: We used four Parkinson-related datasets from the NCBI repository, focusing on stool samples.

View Article and Find Full Text PDF

Soil moisture determines effects of climates and soil properties on nitrogen cycling: Examination of arid and humid soils.

J Environ Manage

December 2024

State Key Laboratory of Soil Erosion and Dryland Faming on the Loess Plateau, The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi, 712100, China; State Key Laboratory of Soil Erosion and Dryland Faming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, Shaanxi, 710061, China. Electronic address:

While soil moisture has a significant effect on nitrogen (N) cycling, how it influences the dependence of this important biological process on environmental factors is unknown. Specifically, it is unclear how the relationships of net N mineralization (N) and soil moisture vary with soil properties and climates. In turn, how the relationships of N vs.

View Article and Find Full Text PDF

Metal-free AAO membranes function as both filters and Raman enhancers for the analysis of nanoplastics.

Water Res

December 2024

Department of Chemistry and Chemical Engineering, Inha University, Incheon, 22212, Republic of Korea; Program in Biomedical Science and Engineering, Inha University, Incheon, 22212, Republic of Korea; NanoRaman Analysis Corp., 100, Inha-ro, Michuhol-gu, Incheon, Republic of Korea. Electronic address:

Nanoplastics (NPs) are growing concerns for health and the environment, being widely distributed across marine, freshwater, air, and biological systems. Analyzing NPs in real environmental samples requires pretreatment, which has traditionally been complex and often leads to underestimation in actual samples, creating a gap between real-world conditions and research findings. In this study, we propose using anodic aluminum oxide (AAO) membrane as a direct Raman substrate for particles on a filter, achieving complete recovery during separation and concentration while simplifying the pretreatment stages.

View Article and Find Full Text PDF

Sweet potatoes are a rich source of nutrients and bioactive compounds, but their quality can be impacted by the drying process. This study investigates the impact of slot jet reattachment (SJR) nozzle and ultrasound (US) combined drying (SJR + US) on sweet potato quality, compared to freeze-drying (FD), SJR drying, and hot air drying (HAD). SJR + US drying at 50 °C closely resembled FD in enhancing quality attributes and outperformed HAD and SJR in key areas such as rehydration, shrinkage ratios, and nutritional composition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!