A biogeographic network reveals evolutionary links between deep-sea hydrothermal vent and methane seep faunas.

Proc Biol Sci

Department of Palaeobiology, Swedish Museum of Natural History, PO Box 50007, Stockholm 10405, Sweden

Published: December 2016

Deep-sea hydrothermal vents and methane seeps are inhabited by members of the same higher taxa but share few species, thus scientists have long sought habitats or regions of intermediate character that would facilitate connectivity among these habitats. Here, a network analysis of 79 vent, seep, and whale-fall communities with 121 genus-level taxa identified sedimented vents as a main intermediate link between the two types of ecosystems. Sedimented vents share hot, metal-rich fluids with mid-ocean ridge-type vents and soft sediment with seeps. Such sites are common along the active continental margins of the Pacific Ocean, facilitating connectivity among vent/seep faunas in this region. By contrast, sedimented vents are rare in the Atlantic Ocean, offering an explanation for the greater distinction between its vent and seep faunas compared with those of the Pacific Ocean. The distribution of subduction zones and associated back-arc basins, where sedimented vents are common, likely plays a major role in the evolutionary and biogeographic connectivity of vent and seep faunas. The hypothesis that decaying whale carcasses are dispersal stepping stones linking these environments is not supported.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5204157PMC
http://dx.doi.org/10.1098/rspb.2016.2337DOI Listing

Publication Analysis

Top Keywords

sedimented vents
16
seep faunas
12
vent seep
12
deep-sea hydrothermal
8
pacific ocean
8
vents
6
biogeographic network
4
network reveals
4
reveals evolutionary
4
evolutionary links
4

Similar Publications

Extreme abiotics drive sediment biocomplexity along pH gradients in a shallow submarine volcanic vent.

Mar Pollut Bull

December 2024

Department of Earth and Marine Sciences, University of Palermo, via Archirafi 18, 90123 Palermo, Italy; National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133 Palermo, Italy; CoNISMa, National Interuniversity Consortium for Marine Sciences, Piazzale Flaminio 9, 00196 Roma, Italy.

Volcanic emissions in shallow vents influence the biogeochemistry of the sedimentary compartment, creating marked abiotic gradients. We assessed the spatial dynamics of the sediment compartment, as for the composition and origin of organic matter and associated prokaryotic community, in a volcanic shallow CO vent (Vulcano Island, Italy). Based on elemental (carbon, nitrogen content and their ratio) and isotopic composition (δC, δN and δS), the contribution of vent-derived organic matter (microbial mats) to sedimentary organic matter was high close to the vent, while the marine-derived end-members (seagrasses) contributed highly at increasing distance.

View Article and Find Full Text PDF

Cumaceans (Crustacea, Peracarida) associated with shallow-water hydrothermal vents at Banderas Bay, Mexico.

Biodivers Data J

December 2024

Departamento de Artes, Educación y Humanidades, Centro Universitario de la Costa, Universidad de Guadalajara, Av. Universidad de Guadalajara 203, CP 48280, Puerto Vallarta, Jalisco, Mexico Departamento de Artes, Educación y Humanidades, Centro Universitario de la Costa, Universidad de Guadalajara, Av. Universidad de Guadalajara 203, CP 48280 Puerto Vallarta, Jalisco Mexico.

Background: Cumaceans mostly inhabit marine environments, where they play a crucial role in marine food webs and actively participate in the transfer between benthic and pelagic systems. Scientific interest in these crustaceans has been increasing, but is limited to certain geographic areas, which do not include extreme environments such as hydrothermal vents.

New Information: Therefore, this study aimed to report the distribution of cumaceans in shallow-water hydrothermal vents at Banderas Bay and to identify the specimens present.

View Article and Find Full Text PDF

The volcanic island, Kueishan Island, harbors two unique shallow-water ecosystems: hydrothermal vents and coral communities. The unique geologic features render the island an ideal place as a spectrum for studying two different ecosystems and mimicking the impacts of climate change on coral reef biota in the future. However, little is known about the meiofauna community there.

View Article and Find Full Text PDF

The majority of large iron formations (IFs) were deposited leading up to Earth's great oxidation episode (GOE). Following the GOE, IF deposition decreased for almost 500 Myr. Subsequently, around 1.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers found that the subseafloor crust harbors not only microbes and viruses, but also animals like the giant tubeworm Riftia pachyptila, suggesting a link between seafloor and subseafloor ecosystems.
  • The study proposes that tubeworm larvae may travel through the hydrothermal vent fluid rather than dispersing in the open water.
  • The discovery of these animals in the subseafloor has significant implications for understanding geochemical processes and highlights the necessity of protecting these habitats, which are not yet fully understood.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!