Starvation-Induced Stress Response Is Critically Impacted by Ceramide Levels in Caenorhabditis elegans.

Genetics

Howard Hughes Medical Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Colorado 80309

Published: February 2017

Our understanding of the cellular mechanisms by which animals regulate their response to starvation is limited, despite the strong relevance of the problem to major human health issues. The L1 diapause of Caenorhabditis elegans, where first-stage larvae arrest in response to a food-less environment, is an excellent system to study this mechanism. We found, through genetic manipulation and lipid analysis, that biosynthesis of ceramide, particularly those with longer fatty acid side chains, critically impacts animal survival during L1 diapause. Genetic interaction analysis suggests that ceramide may act in both insulin-IGF-1 signaling (IIS)-dependent and IIS-independent pathways to affect starvation survival. Genetic and expression analyses indicate that ceramide is required for maintaining the proper expression of previously characterized starvation-responsive genes, genes that are regulated by the IIS pathway and tumor suppressor Rb, and genes responsive to pathogen. These findings provide an important insight into the roles of sphingolipid metabolism, not only in starvation response, but also in aging and food-response-related human health problems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5289851PMC
http://dx.doi.org/10.1534/genetics.116.194282DOI Listing

Publication Analysis

Top Keywords

caenorhabditis elegans
8
human health
8
starvation-induced stress
4
response
4
stress response
4
response critically
4
critically impacted
4
ceramide
4
impacted ceramide
4
ceramide levels
4

Similar Publications

Controlins I-X, Resin Glycosides from the Seeds of and Their Biological Activities.

J Nat Prod

January 2025

School of Pharmacy, Nantong University, 9 Seyuan Road, Nantong 226019, People's Republic of China.

Ten new resin glycosides, controlins I-X (-), were isolated from the seeds of . Their structures were established by spectroscopic analysis as well as by chemical means. Compounds were identified as glycosidic acid methyl esters, considered as artifacts generated via transesterification with MeOH from natural resin glycosides.

View Article and Find Full Text PDF

Spherical harmonics texture extraction for versatile analysis of biological objects.

PLoS Comput Biol

January 2025

European Molecular Biology Laboratory, Cell Biology and Biophysics Unit, Heidelberg, Germany.

The characterization of phenotypes in cells or organisms from microscopy data largely depends on differences in the spatial distribution of image intensity. Multiple methods exist for quantifying the intensity distribution - or image texture - across objects in natural images. However, many of these texture extraction methods do not directly adapt to 3D microscopy data.

View Article and Find Full Text PDF

RNA interference (RNAi) mediates antiviral defense in many eukaryotes. Caenorhabditis elegans mutants that disable RNAi are more sensitive to viral infection. Many mutants that enhance RNAi have also been identified; these mutations may reveal genes that are normally down-regulated in antiviral defense.

View Article and Find Full Text PDF

The endo-lysosomal system plays a crucial role in maintaining cellular homeostasis and promoting organism fitness. The pH of its acidic compartments is a crucial parameter for proper function, and it is dynamically influenced by both intracellular and environmental factors. Here, we present a method based on fluorescence lifetime imaging microscopy (FLIM) for quantitatively analyzing the pH profiles of acidic endolysosomal compartments in diverse types of primary mammalian cells and in live organism .

View Article and Find Full Text PDF

The composition of the gut microbiome is determined by a complex interplay of diet, host genetics, microbe-microbe interactions, abiotic factors, and stochasticity. Previous studies have demonstrated the importance of host genetics in community assembly of the gut microbiome and identified a central role for DBL-1/BMP immune signaling in determining the abundance of gut . However, the effects of DBL-1 signaling on gut bacteria were found to depend on its activation in extra-intestinal tissues, highlighting a gap in our understanding of the proximal factors that determine microbiome composition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!