Proteins are an important class of nanobioparticles with acoustical modes in the sub-THz frequency range. There is considerable interest to measure and establish the role of these acoustical vibrations for biological function. So far, the technique providing the most detailed information about the acoustical modes of proteins is the very recent Extraordinary Acoustic Raman (EAR) spectroscopy. In this technique, proteins are trapped in nanoholes and excited by two optical lasers of slightly different wavelengths producing an electric field at low frequency (<100 GHz). We demonstrate that the acoustical modes of proteins studied by EAR spectroscopy are both infrared- and Raman-active modes, and we provided interpretation of the spectroscopic fingerprints measured at the single-molecule level. A combination of the present calculations with techniques based on the excitation of a single nanobioparticle by an electric field, such as EAR spectroscopy, should provide a wealth of information on the role of molecular dynamics for biological function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.6b01812 | DOI Listing |
Sci Rep
January 2025
College of Mining Engineering, Taiyuan University of Technology, Taiyuan, 030024, Shanxi Province, China.
The influence of interface morphology is of great importance on the shear behavior of the cement mortar-coal composite structure (CCCS) widely distributed in underground mines. In the present research, both the macroscopic- and microscopic failure characteristics of the CCCS with variable interface sawtooth angles (i.e.
View Article and Find Full Text PDFSci Rep
January 2025
Acoustics Research Centre, University of Salford, The Crescent, Manchester, M5 4WT, UK.
It is well understood that a significant shift away from fossil fuel based transportation is necessary to limit the impacts of the climate crisis. Electric micromobility modes, such as electric scooters and electric bikes, have the potential to offer a lower-emission alternative to journeys made with internal combustion engine vehicles, and such modes of transport are becoming increasingly commonplace on our streets. Although offering advantages such as reduced air pollution and greater personal mobility, the widespread approval and uptake of electric micromobility is not without its challenges.
View Article and Find Full Text PDFMicromachines (Basel)
January 2025
Key Laboratory of Instrumentation Science and Dynamic Measurement Ministry of Education, North University of China, Taiyuan 030051, China.
A Hz level narrow linewidth all-optical microwave oscillator based on the torsional radial acoustic modes (TR) of a single-mode fiber (SMF) is proposed and validated. The all-optical microwave oscillator consists of a 20 km SMF main ring cavity and a 5 km SMF sub ring cavity. The main ring cavity provides forward stimulated Brillouin scattering gain and utilizes a nonlinear polarization rotation effect to achieve TR mode locking.
View Article and Find Full Text PDFAnnu Rev Phys Chem
January 2025
Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA;
Ultrafast excitation of nanoparticles can excite the acoustic vibrational modes of the structure that correlate with the expansion coordinates. These modes are frequently seen in transient absorption experiments on metal nanoparticle samples and occasionally for semiconductors. The aim of this review is to give an overview of the physical chemistry of nanostructure acoustic vibrations.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart 70569, Germany.
The emerging new generation of small-scaled acoustic microrobots is poised to expedite the adoption of microrobotics in biomedical research. Recent designs of these microrobots have enabled intricate bioinspired motions, paving the way for their real-world applications. We present a multiorifice design of air-filled spherical microrobots that convert acoustic wave energy to efficient propulsion through a resonant encapsulated microbubble.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!