The liquid-vapor interface is playing an important role in aerosol and cloud chemistry in cloud droplet activation by aerosol particles and potentially also in ice nucleation. We have employed the surface sensitive and chemically selective X-ray photoelectron spectroscopy (XPS) technique to examine the liquid-vapor interface for mixtures of water and small alcohols or small carboxylic acids (C1 to C4), abundant chemicals in the atmosphere in concentration ranges relevant for cloud chemistry or aerosol particles at the point of activation into a cloud droplet. A linear correlation was found between the headgroup carbon 1s core-level signal intensity and the surface excess derived from literature surface tension data with the offset being explained by the bulk contribution to the photoemission signal. The relative interfacial enhancement of the carboxylic acids over the carboxylates at the same bulk concentration was found to be highest (nearly 20) for propionic acid/propionate and still about 5 for formic acid/formate, also in fair agreement with surface tension measurements. This provides direct spectroscopic evidence for high carboxylic acid concentrations at aqueous solution-air interfaces that may be responsible for acid catalyzed chemistry under moderately acidic conditions with respect to their bulk aqueous phase acidity constant. By assessing the ratio of aliphatic to headgroup C 1s signal intensities XPS also provides information about the orientation of the molecules. The results indicate an increasing orientation of alcohols and neutral acids toward the surface normal as a function of chain length, along with increasing importance of lateral hydrophobic interactions at higher surface coverage. In turn, the carboxylate ions exhibit stronger orientation toward the surface normal than the corresponding neutral acids, likely caused by the stronger hydration of the charged headgroup.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.6b09261DOI Listing

Publication Analysis

Top Keywords

liquid-vapor interface
12
cloud chemistry
8
cloud droplet
8
aerosol particles
8
carboxylic acids
8
surface tension
8
neutral acids
8
surface normal
8
surface
7
chemical composition
4

Similar Publications

A unified model for droplet receding contact angles on hydrophobic pillar, pore, and hollowed pillar arrays.

J Colloid Interface Sci

December 2024

Department of Mechanical Engineering (Robotics), Guangdong Technion - Israel Institute of Technology, Shantou, Guangdong 515063, China.

Hypothesis: Current models for receding contact angles of Cassie-Baxter state droplets on textured hydrophobic substrates are applicable only to a specific structural type, e.g., pillar (above which a droplet has isolated contact line and continuous liquid-vapor interface) or pore (continuous contact line and isolated liquid-vapor interface), signifying a lack of universality.

View Article and Find Full Text PDF

Through the decomposition of the pressure into the kinetic and the intermolecular contributions, we show that the pressure anisotropy in the fluid interface, which is the source of the interfacial tension, comes solely from the latter contribution. The pressure anisotropy due to the intermolecular force between the fluid particles in the same or the different fluid components is approximately proportional to the multiplication of the corresponding fluid density gradients, and from the molecular dynamics simulation of the liquid-vapor and liquid-liquid interfaces, we demonstrate that the density gradient theory by van der Waals gives the leading order approximation of the free energy density in inhomogeneous systems, neglecting the Tolman length.

View Article and Find Full Text PDF

Predictions of the interfacial free energy along the coexistence line from single-state calculations.

J Chem Phys

November 2024

Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom.

The calculation of the interfacial free energy between two thermodynamic phases is crucial across various fields, including materials science, chemistry, and condensed matter physics. In this study, we apply an existing thermodynamic approach, the Gibbs-Cahn integration method, to determine the interfacial free energy under different coexistence conditions, relying on data from a single-state calculation at specified pressure and temperature. This approach developed by Laird et al.

View Article and Find Full Text PDF

Sticky Superhydrophobic State.

J Phys Chem Lett

November 2024

Department of Mechanical Engineering (Robotics), Guangdong Technion - Israel Institute of Technology, Shantou, Guangdong 515063, China.

It is common sense that the droplet is stickier to substrates with larger solid-liquid contact areas. Here, we report that this intuitive trend reverses for hollowed micropillars, where a decrease in solid-liquid contact area caused by an increase in the pore size of a pillar top leads to an increase in the droplet depinning force. As compared to relief of liquid-vapor interface distortion caused by the sliding of the contact line on filled pillars, the pore hinders the contact line sliding, hence leading to enhanced interface distortion and droplet adhesion.

View Article and Find Full Text PDF

We present accurate and mathematically consistent formulations of a diffuse-interface model for two-phase flow problems involving rapid evaporation. The model addresses challenges including discontinuities in the density field by several orders of magnitude, leading to high velocity and pressure jumps across the liquid-vapor interface, along with dynamically changing interface topologies. To this end, we integrate an incompressible Navier-Stokes solver combined with a conservative level-set formulation and a regularized, i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!