Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The mode-locking technique using nonlinear polarization rotation via Type I second-harmonic generation (SHG) is demonstrated on the femtosecond timescale. The narrow spectral bandwidth of the loss modulation was broadened via a double crystal approach, which allows for mode-locking broadband gain media. We prove the predicted advantages of the technique to be correct utilizing intrinsic dispersion compensation and group-velocity mismatch management to produce 193 fs pulses. This eliminates the need for dispersion compensating elements. The technique can be applied to high-power lasers at any wavelength where a suitable SHG process is possible.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.41.005748 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!