A circuit for the management of any arbitrary polarization state of light is demonstrated on an integrated silicon (Si) photonics platform. This circuit allows us to adapt any polarization into the standard fundamental TE mode of a Si waveguide and, conversely, to control the polarization and set it to any arbitrary polarization state. In addition, the integrated thermal tuning allows kilohertz speed which can be used to perform a polarization scrambler. The circuit was used in a WDM link and successfully used to adapt four channels into a standard Si photonic integrated circuit.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.41.005656 | DOI Listing |
ACS Appl Nano Mater
January 2025
Atomic Manipulation and Spectroscopy Group (AMS), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Bellaterra, 08193 Barcelona, Spain.
Despite the outstanding progress in photonic sensor devices, a major limitation for its application as label-free biosensors for biomedical analysis lies in the surface biofunctionalization step, that is, the reliable immobilization of the biorecognition element onto the sensor surface. Here, we report the integration of bottom-up synthesized nanoporous graphene onto bimodal waveguide interferometric biosensors as an atomically precise biofunctionalization scaffold. This combination leverages the high sensitivity of bimodal waveguide interferometers and the large functional surface area of nanoporous graphene to create highly sensitive, selective, and robust biosensors for the direct immunoassay detection of C-reactive protein (CRP), an inflammatory biomarker widely used in the clinical diagnosis of infections and sepsis.
View Article and Find Full Text PDFCommun Eng
January 2025
THz-Photonics Group, Technische Universität Braunschweig, Braunschweig, Germany.
New applications such as the Internet of Things, autonomous driving, Industry X.0 and many more will transmit sensitive information via fibers and over the air with envisioned data rates beyond terabits per second. Therefore, the encryption has to be simple, fast and spectrally efficient, so that the power consumption and latency are low and the scarce bandwidth is not wasted.
View Article and Find Full Text PDFAJNR Am J Neuroradiol
January 2025
From Department of Neuroradiology (Niklas Lützen, Charlotte Zander, Horst Urbach), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany and Department of Neurosurgery (Jürgen Beck, Florian Volz, Katharina Wolf, Amir El Rahal), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.
Type 2 CSF leaks are spinal lateral dural tears, causing spontaneous intracranial hypotension (SIH). They may be visualized with digital subtraction myelography (DSM), cone-beam CT (CBCT) myelography, energy-integrating detector or photon-counting CT myelography. A recently introduced ultrahigh-resolution cone-beam CT (UHR-CBCT) myelography has shown beneficial visualization of CSF-venous fistula, another cause of SIH.
View Article and Find Full Text PDFActa Biomater
January 2025
Zhejiang Trusyou Medical Instruments Co., Ltd.,325000, China.
Titanium dioxide nanotube arrays (TNTs) generated in situ on the surface of dental implants have been shown to enhance bone integration for load-bearing support while managing load distribution and energy dissipation to prevent bone resorption from overload. However, their inadequate stability limits the clinical use of conventional TNTs. This study introduces an innovative approach to improve the mechanical stability of TNTs while maintaining their bone-integration efficiency.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Wyant College of Optical Sciences, University of Arizona, 1630 E University Blvd, Tucson, AZ, USA.
Nanophotonic devices control and manipulate light at the nanometer scale. Applications include biological imaging, integrated photonic circuits, and metamaterials. The design of these devices requires the accurate modeling of light-matter interactions at the nanoscale and the optimization of multiple design parameters, both of which can be computationally demanding and time intensive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!