Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The aim of the work was to determine the interactions of a set of anti-cancer compounds with bovine serum albumin (BSA) using a ProteOn XPR36 array biosensor and molecular docking studies. The results revealed that a total of six anti-cancer compounds: gallic acid, doxorubicin, acteoside, salvianolic acid B, echinacoside, and vincristine were able to reversibly bind to the immobilized BSA. The sensorgrams of these six compounds were globally fit to a Langmuir 1:1 interaction model for binding kinetics analysis. There were significant differences in their affinity for BSA, with doxorubicin, the weakest binding compound having 1000-fold less affinity than salvianolic acid B, the strongest binding compound. However, compounds with a similar KD often exhibited markedly different kinetics due to the differences in and . Molecular docking experiments demonstrated that acteoside was partially located within sub-domain IIA of BSA, whereas gallic acid bound to BSA deep within its sub-domain IIIA. In addition, the interactions between these compounds and BSA were dominated by hydrophobic forces and hydrogen bonds. Understanding the detailed information of these anti-cancer compounds can provide important insights into optimizing the interactions and activity of potential compounds during drug development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6274227 | PMC |
http://dx.doi.org/10.3390/molecules21121706 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!