Efficient Nonviral Transfection of Primary Intervertebral Disc Cells by Electroporation for Tissue Engineering Application.

Tissue Eng Part C Methods

1 Tissue and Organ Mechanobiology, Institute for Surgical Technology and Biomechanics, University of Bern, Bern, Switzerland .

Published: January 2017

Low back pain (LBP) is an increasing global health problem associated with intervertebral disc (IVD) trauma and degeneration. Current treatment options include surgical interventions with partial unsatisfactory outcomes reported such as failure to relieve LBP, nonunions, nerve injuries, or adjacent segment disease. Cell-based therapy and tissue engineered IVD constructs supplemented with transfected disc cells that incorporate factors enhancing matrix synthesis represent an appealing approach to regenerate the IVD. Gene delivery approaches using transient nonviral gene therapy by electroporation are of a high clinical translational value since the incorporated DNA is lost after few cell generations, leaving the host's genome unmodified. Human primary cells isolated from clinically relevant samples were generally found very hard to transfect compared to cell lines. In this study, we present a range of parameters (voltage pulse, number, and duration) from the Neon Transfection System for efficient transfection of human and bovine IVD cells. To demonstrate efficiency, these primary cells were exemplarily transfected with the commercially available plasmid pCMV6-AC-GFP tagged with copepod turbo green fluorescent protein. Flow cytometry was subsequently applied to quantify transfection efficiency. Our results showed that two pulses of 1400 V for 20 ms revealed good and reproducible results for both human and bovine IVD cells with efficiencies ≥47%. The presented parameters allow for successful human and bovine IVD cell transfection and provide an opportunity for subsequent regenerative medicine application.

Download full-text PDF

Source
http://dx.doi.org/10.1089/ten.TEC.2016.0355DOI Listing

Publication Analysis

Top Keywords

human bovine
12
bovine ivd
12
intervertebral disc
8
disc cells
8
primary cells
8
ivd cells
8
cells
6
ivd
6
transfection
5
efficient nonviral
4

Similar Publications

Primary human mast cells (MC) obtained through culturing of blood-derived MC progenitors are the preferred model for the study of MRGPRX2- IgE-mediated MC activation. In order to assess the impact of culture conditions on functional MRGPRX2 expression, we cultured CD34-enriched PBMC from peripheral whole blood (PB) and buffy coat (BC) samples in MethoCult medium containing stem cell factor (SCF) and interleukin (IL)-3, modified through variations in seeding density and adding or withholding IL-6, IL-9 and fetal bovine serum (FBS). Functional expression of MRGPRX2 was assessed after 4 weeks via flow cytometry.

View Article and Find Full Text PDF

Paratuberculosis is an infectious disease caused by subspecies (MAP). Typically, ruminant animals including cattle, buffalo, goats, and sheep are infected with MAP. Animals get infected with MAP in a number of ways, such as by eating or drinking contaminated food or water, or by nursing from an infected mother who may have contaminated teats or directly shed the organism in milk or colostrum.

View Article and Find Full Text PDF

Objective: Berry syndrome is a group of rare congenital cardiac malformations including aortopulmonary window (APW), aortic origin of the right pulmonary artery (AORPA), interruption of the aortic arch (IAA), patent ductus arteriosus (PDA) (supplying the descending aorta) and intact ventricular septum. This paper will analyze the clinical data of 7 patients with Berry syndrome who underwent surgical treatment in our institution and discuss the one-stage surgical correction of Berry syndrome in combination with the literature.

Methods: From January 2013 to July 2024, a total of 7 children with Berry syndrome were admitted to the Cardiac Surgery Department of Beijing Children's Hospital.

View Article and Find Full Text PDF

This study aims to demonstrate that redox couples, regardless of their electrical charges, are unnecessary for detecting and quantifying electroactive proteins using an electrochemical sensor functionalized with a molecularly imprinted polymer. Our approach involved designing a polydopamine imprinted biosensor for detecting bovine serum albumin as the model protein. Electrochemical measurements were conducted in a phosphate-buffered solution (PBS) and solutions containing the negatively charged hexacyanoferrate, the neutral ferrocene, or the positively charged hexaammineruthenium (III) probes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!