The glass transition region in nonconfined polymeric and low-molecular-weight supercooled liquids is probed by temperature-modulated calorimetry at a frequency of 3.3 mHz. From the distribution of relaxation times derived by analyzing the complex heat capacity, the number N_{α} of cooperatively rearranging units is estimated. This is done by resorting to a method in which cooperative motion is viewed as a result of a spontaneous regression of energy fluctuations. After a first, local, structural transition occurs, the energy threshold for the rearrangement of adjacent molecular units decreases progressively. This facilitation process is associated to a corresponding evolution of the density of states in a canonical representation and may be considered as a continuous spanning through different dynamic states toward a condition in which configurational constraints disappear. A good agreement is found with the N_{α} values obtained from the same calorimetric data within the framework of Donth's fluctuation theory. It is shown that, at variance from previous treatments, N_{α} can be estimated from just the relaxation function, without resorting to the knowledge of the configurational entropy. Examples point to a modest dependence of the N_{α} estimates on the experimental method used to derive the relaxation function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.94.052504 | DOI Listing |
J Assist Reprod Genet
January 2025
Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
Purpose: This study is to evaluate duration of oocyte cryostorage and association with thaw survival, fertilization, blastulation, ploidy rates, and pregnancy outcomes in patients seeking fertility preservation.
Methods: Retrospective cohort study to evaluate clinical outcomes in patients who underwent fertility preservation from 2011 to 2023 via oocyte vitrification for non-oncologic indications. Primary outcome was thaw survival rate.
Langmuir
January 2025
Univ. Rouen Normandie, Normandie Univ., SMS, UR 3233, F-76000 Rouen, France.
It has been shown that depositing ketoprofen as thin films on glass substrates has a stabilizing effect on the amorphous state of ketoprofen. Polyethylene glycol ( = 6000 g/mol) was mixed with ketoprofen in a wide range of concentrations. Amorphous thin films were prepared by spin coating and subjected to storage conditions with different levels of relative humidity.
View Article and Find Full Text PDFInt J Pharm
December 2024
Center for Science of Imperatriz, Federal University of Maranhão - UFMA, 65900-410, Imperatriz, MA, Brazil. Electronic address:
This study reports the synthesis and the experimental-theoretical characterization of a new coamorphous system consisting of ethionamide (ETH) and mandelic acid (MND) as a coformer. The solid dispersion was synthesized using the slow solvent evaporation method in an ethanolic medium. The structural, vibrational, and thermal properties of the system were characterized.
View Article and Find Full Text PDFAdv Mater
January 2025
State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510641, China.
ACS Macro Lett
January 2025
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States.
Poly(lactide) (PLA) is a promising biodegradable polymer with potential applications in single-use packaging. However, its use is limited by brittleness, and its biodegradability is restricted to industrial compost conditions due in part to an elevated glass transition temperature (). We previously showed that addition of a poly(ethylene-oxide)--poly(butylene oxide) diblock copolymer (PEO-PBO) forms macrophase-separated rubbery domains in PLA that can impart significant toughness at only 5 wt %.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!