Thermodynamic geometry of minimum-dissipation driven barrier crossing.

Phys Rev E

Molecular Biophysics Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA and Kavli Energy NanoSciences Institute at Berkeley, California 94720, USA.

Published: November 2016

We explore the thermodynamic geometry of a simple system that models the bistable dynamics of nucleic acid hairpins in single molecule force-extension experiments. Near equilibrium, optimal (minimum-dissipation) driving protocols are governed by a generalized linear response friction coefficient. Our analysis demonstrates that the friction coefficient of the driving protocols is sharply peaked at the interface between metastable regions, which leads to minimum-dissipation protocols that drive rapidly within a metastable basin, but then linger longest at the interface, giving thermal fluctuations maximal time to kick the system over the barrier. Intuitively, the same principle applies generically in free energy estimation (both in steered molecular dynamics simulations and in single-molecule experiments), provides a design principle for the construction of thermodynamically efficient coupling between stochastic objects, and makes a prediction regarding the construction of evolved biomolecular motors.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.94.052106DOI Listing

Publication Analysis

Top Keywords

thermodynamic geometry
8
driving protocols
8
friction coefficient
8
geometry minimum-dissipation
4
minimum-dissipation driven
4
driven barrier
4
barrier crossing
4
crossing explore
4
explore thermodynamic
4
geometry simple
4

Similar Publications

Context: Riboflavin (RF), also known as B2 vitamin, is the precursor to flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), two co-enzymes involved in many electron transport processes. Interactions of the isoalloxazine ring, common to all three compounds, are of great interest due to their biological function in flavoproteins and relevance in the transport by the carrier protein leading to development of drug delivery strategies and non-invasive diagnostics techniques. Based on protein crystallographic data, a computational investigation of the interactions in the complexes between lumiflavin, a model compound, and aromatic amino acids, tyrosine and tryptophan, was pursued with the goal of characterizing noncovalent interactions.

View Article and Find Full Text PDF

From Guest-Induced Crystallization to Molecular Imprinting: Calculation-Guided Discovery of Hydrogen-Bonded Tetrazole Frameworks for p-Xylene Separation.

Angew Chem Int Ed Engl

January 2025

Collaborative Innovation Center of Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, China.

Exploring host-guest interactions to regulate hydrogen-bonding assembly offers a promising approach for developing advanced porous crystal materials (PCMs). However, screening compatible guests with appropriate geometries and host-guest interactions that could inhibit the dense packing of building blocks remains a primary challenge. This study presents a novel guest-induced crystallization (GIC) strategy, guided by thermodynamic calculations, to develop porous hydrogen-bonded organic frameworks (HOFs) using structurally challenging tetrazole building units.

View Article and Find Full Text PDF

Self-assembly of defined core-shell ellipsoidal particles at liquid interfaces.

J Colloid Interface Sci

December 2024

School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK; Department of Physics, University of Gothenburg, SE-41296 Gothenburg, Sweden; University of Münster, Institute of Physical Chemistry, Corrensstr. 28/30, 48149 Münster, Germany. Electronic address:

Hypothesis: Ellipsoidal particles confined at liquid interfaces exhibit complex self-assembly due to quadrupolar capillary interactions, favouring either tip-to-tip or side-to-side configurations. However, predicting and controlling which structure forms remains challenging. We hypothesize that introducing a polymer-based soft shell around the particles will modulate these capillary interactions, providing a means to tune the preferred self-assembly configuration based on particle geometry and shell properties.

View Article and Find Full Text PDF

Context: Hydrogen storage in porous nanostructured compounds have recently attracted a lot of attention due to the fact that the underlying adsorption mechanism and thermodynamics provide suitable platform for room temperature adsorption and desorption of H molecules. This work reports the findings of a study on the reversible hydrogen storage capacities of Sc and Y decorated C fullerene, conducted using dispersion-corrected density functional theory (DFT) calculation. The transition metal (TM) atoms, such as Sc and Y, are identified to attach to the C-C bridge position of the C fullerene through non-covalent closed-shell interactions.

View Article and Find Full Text PDF

The Role of Geometry on the Ease of Solidification Inside and Out of Cylindrical Nanopores.

Langmuir

December 2024

Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada T6G 1H9.

We investigated the role of a nanoporous particle on the formation of macroscopic solid in the framework of equilibrium thermodynamics and from the free-energy perspective. The model particle has cylindrical pores with equidistant circular openings on the particle surface. We focused on two potentially limiting steps: (i) the solid nucleation from liquid inside a single pore and (ii) the bridging of multiple pores on the particle surface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!