We provide Reynolds averaged azimuthal velocity profiles, measured in a Taylor-Couette system in turbulent flow, at medium Reynolds (7800 < Re < 18000) number with particle image velocimetry technique. We find that in the wall regions, close to the inner and outer cylinders, the azimuthal velocity profile reveals a significant deviation from classical logarithmic law. In order to propose a new law of the wall, the profile of turbulent mixing length was estimated from data processing; it was shown to behave nonlinearly with the radial wall distance. Based on this turbulent mixing length expression, a law of the wall was proposed for the Reynolds averaged azimuthal velocity, derived from momentum balance and validated by comparison to different data. In addition, the profile of viscous dissipation rate was investigated and compared to the global power needed to maintain the inner cylinder in rotation.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.94.053120DOI Listing

Publication Analysis

Top Keywords

law wall
12
azimuthal velocity
12
reynolds averaged
8
averaged azimuthal
8
turbulent mixing
8
mixing length
8
wall
5
log law
4
wall revisited
4
revisited taylor-couette
4

Similar Publications

Aneurysm modeling and simulation play an important role in many specialist areas in the field of medicine such as surgical education and training, clinical diagnosis and prediction, and treatment planning. Despite the considerable effort invested in developing computational fluid dynamics so far, visual simulation of blood flow dynamics in aneurysms, especially the under-explored aspect of bifurcation aneurysms, remains a challenging issue. To alleviate the situation, this study introduces a novel Smoothed Particle Hydrodynamics (SPH)-based method to model and visually simulate blood flow, bifurcation progression, and fluid-structure interaction.

View Article and Find Full Text PDF

Numerical simulation study on the influence of bend diameter rate on the flow characteristics of nature gas hydrate particles.

Sci Rep

December 2024

Jiangsu Key Laboratory of Oil-Gas Storage and Transportation Technology, Changzhou University, Changzhou, 213164, Jiangsu, China.

Bend pipe is a common part of long distance pipeline. There is very important to study the flow law of hydrate particles in the bend pipe, and pipeline design will be optimized. In addition, the efficiency and safety of pipeline gas transmission will be improved.

View Article and Find Full Text PDF

As Moore's Law comes to an end, the implementation of high-performance chips through transistor scaling has become increasingly challenging. To improve performance, increasing the chip area to integrate more transistors has become an essential approach. However, due to restrictions such as the maximum reticle area, cost, and manufacturing yield, the chip's area cannot be continuously increased, and it encounters what is known as the "area-wall".

View Article and Find Full Text PDF

Long time series of velocity profiles collected by up-looking acoustic profilers in the westernmost sill of the Strait of Gibraltar show an unexpected pattern in the deepest ∼80 m of the water column, consisting in an appreciable diurnal weakening of the measured horizontal velocity. A harmonic analysis performed on long time series reveals a surprising magnitude of S constituent (exactly 1 cpd of frequency) in the horizontal velocity and echo amplitude, which prevails over the rest of diurnal constituents within this depth range, including K, despite being around 200 times smaller than it in the tide generating potential. High resolution echograms collected by a new instrument recently installed in the mooring line, point at the diel vertical migration of living acoustic scatterers (zooplankton) as the most reasonable cause.

View Article and Find Full Text PDF

Semiconducting single-wall carbon nanotubes (s-SWCNTs) represent one of the most promising materials for surpassing Moore's Law and developing the next generation of electronic devices. Despite numerous developed approaches, reducing the contact resistance of s-SWCNTs networks remains a significant challenge in achieving further enhancements in electronic performance. In this study, antimony triiodide (SbI) is efficiently encapsulated within high-purity s-SWCNTs films at low temperatures, forming 1D SbI@s-SWCNTs vdW heterostructures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!