Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Illicium sesquiterpenes have been the subject of numerous synthetic efforts due to their ornate and highly oxidized structures as well as significant biological activities. Herein we report the first chemical synthesis of (+)-pseudoanisatin from the abundant feedstock chemical cedrol (∼$50 USD/kg) in 12 steps using extensive site-selective C(sp)-H bond functionalization. Significantly, this work represents a novel oxidative strategic template for future approaches to these natural products and their analogs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5261859 | PMC |
http://dx.doi.org/10.1021/jacs.6b11739 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!