An evanescent wave infrared chemical sensor was developed to selectively detect volatile amines with heterocyclic or phenyl ring. To achieve this goal, a rhenium-based metallacycle with a "molecular-trap" structure was designed and synthesized as host molecules to selectively trap amines with heterocyclic or phenyl ring through Re-amine and π-π interactions. To explore the trapping properties of the material, a synthesized Re-based molecular trap was treated on an IR sensing element, and wide varieties of volatile organic compounds (VOCs) were examined to establish the selectivity for detection of amines. Based on the observed IR intensities, the Re-based molecular trap favors interaction with amines as evidenced by the variation of absorption bands of the Re molecular trap. With extra π-π interaction force, molecules, such as pyridine and benzylamine, could be detected. After optimization of the parameters for IR sensing, a rapid response in the detection of pyridine was observed, and the linear ranges were generally up to 10 mg/L with a detection limit around 5.7 μg/L. In the presence of other VOCs, the recoveries in detection of pyridine were all close to 100%.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.6b11767 | DOI Listing |
Plant Dis
January 2025
Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 yuanmingyuanxilu, beijing, Beijing, China, 100193;
The golden cyst nematode, Globodera rostochiensis, is a regulatory pathogen that can significantly reduce potato yields and hinder the international trade of potatoes. Unfortunately, this nematode has been reported in southwestern China. Nevertheless, limited information exists on the resistance levels of Chinese potato germplasm, especially primary commercial cultivars, to G.
View Article and Find Full Text PDFAdv Mater
January 2025
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P. R. China.
Formamidinium lead triiodide (FAPbI) perovskite quantum dot (PQD) are promising candidate for high-performing quantum dot photovoltaic due to its narrow bandgap, high ambient stability, and long carrier lifetime. However, the carrier transport blockage and nonradiative recombination loss, originating from the high-dielectric ligands and defects/trap states on the FAPbI PQD surface, significantly limit the efficiency and stability of its photovoltaic performance. In this work, through exploring dual-site molecular ligands, namely 2-thiophenemethylammonium iodide (2-TM) and 2-thiopheneethylammonium iodide (2-TE), a dual-phase synergistic ligand exchange (DSLE) protocol consisting of both solution-phase and solid-state ligand engineering is demonstrated.
View Article and Find Full Text PDFJ Vet Med Sci
January 2025
Department of Molecular and Cellular Parasitology, Graduate School of Medical Sciences, Kitasato University.
Phys Rev Lett
December 2024
Laboratoire De Physique de l'École Normale Supérieure, ENS, PSL, CNRS, Sorbonne Université, Université de Paris, 24 rue Lhomond, 75005 Paris, France.
PLoS Genet
January 2025
Department of Biology, Boston University, Boston Massachusetts, United States of America.
The death and clearance of nurse cells is a consequential milestone in Drosophila melanogaster oogenesis. In preparation for oviposition, the germline-derived nurse cells bequeath to the developing oocyte all their cytoplasmic contents and undergo programmed cell death. The death of the nurse cells is controlled non-autonomously and is precipitated by epithelial follicle cells of somatic origin acquiring a squamous morphology and acidifying the nurse cells externally.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!