Two new 3D porphyrin-based metal organic frameworks were obtained by solvothermally reacting iron(iii) chloride, a free base (5,10,15,20-tetrakis[4-(2,3,4,5-tetrazolyl)phenyl]porphyrin) (HTTPP) and either pyrazine or 1,4-diazabicyclo[2.2.2]octane (DABCO). Both MOFs displayed a 3-D open framework of the fry topology, where the inorganic building unit is a chain of corner-sharing FeNO octahedra and the porphyrinic linker is metallated with iron during the reaction course, with the N-donor base bridging the iron of the porphyrinic cores. Through thorough structural and spectroscopic analyses of the pyrazine containing material the chemical formula [FepzTTP(FeDMFFeOH)] was inferred (x ≥ 0.25). Whereas the already reported carboxylate analogue is built up from a pure iron(iii) inorganic chain, here spectroscopic and structural studies evidenced a mixed valence iron(ii/iii) state, evidencing that, in agreement with the HSAB theory, the substitution of a carboxylate function by a tetrazolate one allows redox tuning. Finally, both materials feature one-dimensional channels of ca. 8 × 12 Å within the structures with permanent microporosity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c6dt04208b | DOI Listing |
Acta Crystallogr E Crystallogr Commun
January 2025
Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska St. 64, Kyiv 01601, Ukraine.
The title compound is a germanium-based hybrid metal halide that represents a less-toxic alternative to more popular lead-based analogues in optoelectronic applications. {(2-ICHNH)[GeI]} is composed of infinite inorganic layers that are formed by [GeI] octa-hedra connected in a corner-sharing manner with four equatorial I atoms. The organic (2-ICHNH) cations inter-leave the inorganic layers.
View Article and Find Full Text PDFActa Crystallogr E Crystallogr Commun
January 2025
Department of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska str. 64/13, 01601 Kyiv, Ukraine.
The title compound, {(CHNO)[SnBr]} , is a layered hybrid perovskite crystallizing in the monoclinic space group 2/. The asymmetric unit consists of one HC-O-NH -CH cation (MeHA), one Sn atom located on a twofold rotation axis, and two Br atoms. The Sn atom has a distorted octa-hedral coordination environment formed by the bromido ligands.
View Article and Find Full Text PDFJ Fluoresc
January 2025
The Key Laboratory for Surface Engineering and Remanufacturing in Shaanxi Province, Key Laboratory of Chemistry of New Material of Functional Inorganic Composites, School of Chemical Engineering, Xi'an University, Xi'an, Shaanxi, China.
Methylene blue (MB) contamination has become a significant environmental issue due to its widespread presence in industrial effluents, posing serious threats to ecosystems and human health. As a result, there is an urgent need for the development of novel adsorbent materials that can effectively remove these pollutants from water sources. In this context, the present study focuses on the design and synthesis of two coordination polymers (CPs) containing Zn(II) and Mn(II), namely, {[Mn(L)(tib)]·4HO} (1) and [Zn(L)(3,5-bibp)] (2), using a combined-ligand approach under solvothermal conditions.
View Article and Find Full Text PDFChemistry
January 2025
Fujian Normal University, School of Chemistry and Materials, No.8 Shangsan Road, ., Fuzhou City, CHINA.
The advancement of high-value CH4 purification technology within the natural gas industry is paramount for industrial processes. Herein, we constructed ZJNU-402, a new porous material characterized by permanent porosity, as an effective adsorbent for separating C3H8/CH4 and C2H6/CH4 mixtures. The findings reveal an outstanding C3H8 adsorption capacity of 68 cm3 g-1 and a moderate C2H6 adsorption rate of 42 cm3 g-1, with a notably lower CH4 adsorption rate of 11 cm3 g-1.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
National University of Singapore, Department of Chemical and Biomolecular Engineering, 4 Engineering Drive 4, Blk E5, #02-16, 117585, Singapore, SINGAPORE.
Metal-organic cages (MOCs) have been considered as emerging zero-dimensional (0D) porous fillers to generate molecularly homogenous MOC-based membrane materials. However, the discontinuous pore connectivity and low filler concentrations limit the improvement of membrane separation performance. Herein, we propose the dimension augmentation of MOCs in membranes using three-dimensional (3D) supramolecular MOC networks as filler materials in mixed matrix membranes (MMMs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!