Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) is one of the most commonly applied methods for lateral trace element distribution analysis in medical studies. Many improvements of the technique regarding quantification and achievable lateral resolution have been achieved in the last years. Nevertheless, sample preparation is also of major importance and the optimal sample preparation strategy still has not been defined. While conventional histology knows a number of sample pre-treatment strategies, little is known about the effect of these approaches on the lateral distributions of elements and/or their quantities in tissues. The technique of formalin fixation and paraffin embedding (FFPE) has emerged as the gold standard in tissue preparation. However, the potential use for elemental distribution studies is questionable due to a large number of sample preparation steps. In this work, LA-ICP-MS was used to examine the applicability of the FFPE sample preparation approach for elemental distribution studies. Qualitative elemental distributions as well as quantitative concentrations in cryo-cut tissues as well as FFPE samples were compared. Results showed that some metals (especially Na and K) are severely affected by the FFPE process, whereas others (e.g., Mn, Ni) are less influenced. Based on these results, a general recommendation can be given: FFPE samples are completely unsuitable for the analysis of alkaline metals. When analyzing transition metals, FFPE samples can give comparable results to snap-frozen tissues. Graphical abstract Sample preparation strategies for biological tissues are compared with regard to the elemental distributions and average trace element concentrations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5591616PMC
http://dx.doi.org/10.1007/s00216-016-0124-6DOI Listing

Publication Analysis

Top Keywords

sample preparation
24
trace element
12
ffpe samples
12
preparation strategies
8
strategies biological
8
biological tissues
8
number sample
8
elemental distribution
8
distribution studies
8
elemental distributions
8

Similar Publications

Objective: To compare the translucency and contrast ratio of 13 different resin based restorative materials and to evaluate the effect of 2 different bleaching methods on the translucency and contrast ratio of these materials.

Methods: In this study, a total of 260 samples were prepared, 20 from each of 13 different dimethacrylate-based restorative materials. Then, each material group was divided into 4 subgroups.

View Article and Find Full Text PDF

Introduction: Ambulance staff play a crucial role in responding to mental health crises. However, negative regard toward patients with mental health conditions can hinder care. The Medical Condition Regard Scale (MCRS) assesses regards or attitudes but has not previously been validated for educated ambulance staff and has never been translated into Norwegian.

View Article and Find Full Text PDF

Coal gangue (CG) is an industrial solid waste produced by coal mining and separation that is considered to have a significant effect on the soil or water environment when exposed to the air, exacerbating ecological pollution. The comprehensive utilization of CG has always been a difficult problem due to the complex mineralogical characteristics. Producing concrete aggregates with CG is an effective strategy for utilising CG resources synthetically.

View Article and Find Full Text PDF

Objectives: This study aimed to investigate cracked teeth and vertical root fracture observable on micro-CT images of extracted roots of mandibular incisors, after fiber post removal.

Materials And Methods: Thirty mandibular incisors were selected with any degree of slight incisal wear inspected with the aid of a stereomicroscope under 12x magnification, in order to have a group of young adult specimens according to the criteria of Hugoson et al. A sample of twelve mandibular incisors were selected, aged between 20 and 30 years old, with similar dentine volume and thickness.

View Article and Find Full Text PDF

This study aims to modify raw zeolite with metal oxide nanocomposites to remove nickel (Ni) ions from synthetic wastewater. Novel zeolite-doped magnesium oxide (MgO), iron oxide (FeO), and zinc oxide (ZnO) nanocomposites were synthesized by hydrothermal-calcination methods. The novel zeolite-doped metal oxide nanocomposites were used as adsorbents to remove Ni (II) ions from synthetic wastewater.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!