Introduction: Xenogeneic extracellular matrix (ECM) hydrogels have shown promise in remediating cardiac ischemia damage in animal models, yet analogous human ECM hydrogels have not been well development. An original human placenta-derived hydrogel (hpECM) preparation was thus generated for assessment in cardiomyocyte cell culture and therapeutic cardiac injection applications.
Methods And Results: Hybrid orbitrap-quadrupole mass spectrometry and ELISAs showed hpECM to be rich in collagens, basement membrane proteins, and regenerative growth factors (e.g. VEGF-B, HGF). Human induced pluripotent stem cell (iPSC)-derived cardiomyocytes synchronized and electrically coupled on hpECM faster than on conventional cell culture environments, as validated by intracellular calcium measurements. In vivo, injections using biotin-labeled hpECM confirmed its spatially discrete localization to the myocardium proximal to the injection site. hpECM was injected into rat myocardium following an acute myocardium infarction induced by left anterior descending artery ligation. Compared to sham treated animals, which exhibited aberrant electrical activity and larger myocardial scars, hpECM injected rat hearts showed a significant reduction in scar volume along with normal electrical activity of the surviving tissue, as determined by optical mapping.
Conclusion: Placental matrix and growth factors can be extracted as a hydrogel that effectively supports cardiomyocytes in vitro, and in vivo reduces scar formation while maintaining electrophysiological activity when injected into ischemic myocardium.
Statement Of Significance: This is the first report of an original extracellular matrix hydrogel preparation isolated from human placentas (hpECM). hpECM is rich in collagens, laminin, fibronectin, glycoproteins, and growth factors, including known pro-regenerative, pro-angiogenic, anti-scarring, anti-inflammatory, and stem cell-recruiting factors. hpECM supports the culture of cardiomyocytes, stem cells and blood vessels assembly from endothelial cells. In a rat model of myocardial infarction, hpECM injections were safely deliverable to the ischemic myocardium. hpECM injections repaired the myocardium, resulting in a significant reduction in infarct size, more viable myocardium, and a normal electrophysiological contraction profile. hpECM thus has potential in therapeutic cardiovascular applications, in cellular therapies (as a delivery vehicle), and is a promising biomaterial for advancing basic cell-based research and regenerative medicine applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2016.12.027 | DOI Listing |
Xenotransplantation
July 2021
Laboratory of Experimental Surgery and Transplantation, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium.
Background: In the field of xenotransplantation, digital image analysis (DIA) is an asset to quantify heterogeneous cell infiltrates around transplanted encapsulated islets.
Materials And Methods: RGD-alginate was used to produce empty capsules or to encapsulate neonatal porcine islets (NPI) with different combinations of human pancreatic extracellular matrix (hpECM), porcine mesenchymal stem cells (pMSC) and a chitosan anti-fouling coating. Capsules were transplanted subcutaneously in rats for one month and then processed for immunohistochemistry.
Regen Med
August 2019
Department of Plastic Surgery, Nan Fang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China.
To explore the feasibility of human placenta extracellular matrix (HPECM) hydrogel in restoring the hair-inductive capacity of high-passaged (P8) dermal papilla cells (DPCs) for hair follicle regeneration. HPECM hydrogel was prepared following decellularization and enzymatic solubilization treatment. DPCs isolated from human scalp were cultured in 2D and 3D environments.
View Article and Find Full Text PDFSci Rep
July 2018
Division of Transplantation, Department of Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, 53705, USA.
Acta Biomater
April 2017
Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States; Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA, United States. Electronic address:
Introduction: Xenogeneic extracellular matrix (ECM) hydrogels have shown promise in remediating cardiac ischemia damage in animal models, yet analogous human ECM hydrogels have not been well development. An original human placenta-derived hydrogel (hpECM) preparation was thus generated for assessment in cardiomyocyte cell culture and therapeutic cardiac injection applications.
Methods And Results: Hybrid orbitrap-quadrupole mass spectrometry and ELISAs showed hpECM to be rich in collagens, basement membrane proteins, and regenerative growth factors (e.
J Biomed Mater Res B Appl Biomater
October 2007
Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.
The specific aim of our investigation is to study the potential use of a collagen/heparin-carrying polystyrene (HCPS) composite extracellular matrix for articular cartilage tissue engineering. Here, we created a high-performance extracellular matrix (HpECM) scaffold to build an optimal extracellular environment using an HCPS we originally developed, and an atelocollagen honeycomb-shaped-scaffold (ACHMS-scaffold) with a membrane seal. This scaffold was coated with HCPS to enable aggregation of heparin-binding growth factors such as FGF-2 and TGF-beta1 within the scaffold.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!