A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

In vivo two-photon imaging reveals a role of progesterone in reducing axonal dieback after spinal cord injury in mice. | LitMetric

In vivo two-photon imaging reveals a role of progesterone in reducing axonal dieback after spinal cord injury in mice.

Neuropharmacology

Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China. Electronic address:

Published: April 2017

Progesterone (PG) as a neuroprotective reagent has been used for the treatment of spinal cord injury (SCI) in experimental animal models. However, its effect and mechanism on axonal dieback at the early stage of SCI remain unclear. Here, we investigate the dynamics of injured axons and the effect of PG on the axonal dieback, glial response, and behavioral recovery in a mouse model of SCI. Two-photon intravital imaging combined with a simplified imaging window chamber were used to image axons in hemisected spinal cords over a period of 3 days. Repeated imaging showed that axonal dieback distance in mice treated with PG after SCI was significantly reduced than that in mice treated with vehicle after SCI (P < 0.05) at the time point of 24 h, 48 h, and 72 h after SCI. The densities of astrocytes and microglia in the SCI-vehicle treated group were significantly higher than those in mice treated with PG after SCI (P < 0.05). Real time polymerase chain reaction assay indicated that administration of PG after SCI down-regulated the expression of pro-inflammatory cytokines MCP-1, NOS2, and IL-1β (P < 0.05). PG treatment also improved the behavioral performance post injury. These findings suggested that PG exerted a neuroprotective effect by attenuating axonal dieback, reducing the accumulation of astrocytes and microglia and inhibiting the release of pro-inflammatory cytokines.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuropharm.2016.12.007DOI Listing

Publication Analysis

Top Keywords

axonal dieback
16
spinal cord
8
cord injury
8
mice treated
8
sci
5
in vivo two-photon
4
imaging
4
two-photon imaging
4
imaging reveals
4
reveals role
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!