Previous studies in the mouse indicated that ARID3A plays a critical role in the first cell fate decision required for generation of trophectoderm (TE). Here, we demonstrate that ARID3A is widely expressed during mouse and human placentation and essential for early embryonic viability. ARID3A localizes to trophoblast giant cells and other trophoblast-derived cell subtypes in the junctional and labyrinth zones of the placenta. Conventional Arid3a knockout embryos suffer restricted intrauterine growth with severe defects in placental structural organization. Arid3a null placentas show aberrant expression of subtype-specific markers as well as significant alteration in cytokines, chemokines and inflammatory response-related genes, including previously established markers of human placentation disorders. BMP4-mediated induction of trophoblast stem (TS)-like cells from human induced pluripotent stem cells results in ARID3A up-regulation and cytoplasmic to nuclear translocation. Overexpression of ARID3A in BMP4-mediated TS-like cells up-regulates TE markers, whereas pluripotency markers are down-regulated. Our results reveal an essential, conserved function for ARID3A in mammalian placental development through regulation of both intrinsic and extrinsic developmental programs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5540318 | PMC |
http://dx.doi.org/10.1016/j.ydbio.2016.12.003 | DOI Listing |
Biomolecules
January 2025
Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100 Caserta, Italy.
Hepatocellular carcinoma (HCC) is among the most aggressive and lethal human tumors. Many functional studies have demonstrated the role of non-coding RNAs (ncRNA), particularly microRNAs (miRNA), in the regulation of hepatocarcinogenesis driving pathways. MiR-125a-5p (miR-125a) has been consistently reported as an oncosuppressive miRNA, as demonstrated in vivo and in vitro.
View Article and Find Full Text PDFJ Headache Pain
January 2025
Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
Background: Migraine is a complex neurological disorder characterized by recurrent episodes of severe headaches. Although genetic factors have been implicated, the precise molecular mechanisms, particularly gene expression patterns in migraine-associated brain regions, remain unclear. This study applies machine learning techniques to explore region-specific gene expression profiles and identify critical gene programs and transcription factors linked to migraine pathogenesis.
View Article and Find Full Text PDFFront Cardiovasc Med
December 2024
Department of Cardiology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
Introduction: Patients with acute myocardial infarction (AMI) are at high risk of progressing to heart failure (HF). Recent research has shown that lipid droplet-related genes (LDRGs) play a crucial role in myocardial metabolism following MI, thereby influencing the progression to HF.
Methods: Weighted gene co-expression network analysis (WGCNA) and differential expression gene analysis were used to screen a transcriptome dataset of whole blood cells from AMI patients with (AMI HF, = 16) and without progression (AMI no-HF, = 16).
Cell Biol Toxicol
December 2024
Department of Obsterics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.
Study Question: Can a genome-wide association study (GWAS) and transcriptome-wide association study (TWAS) help identify genetic variation or genes associated with circulating anti-Müllerian hormone (AMH) levels in Samoan women?
Summary Answer: We identified eleven genome-wide suggestive loci (strongest association signal in 19-946163-G-C [ = 2.32 × 10⁻⁷]) and seven transcriptome-wide significant genes ( [all with a < 2.50 × 10⁻⁶]) associated with circulating AMH levels in Samoan women.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!