Silencing of BnTT1 family genes affects seed flavonoid biosynthesis and alters seed fatty acid composition in Brassica napus.

Plant Sci

Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Tiansheng Road 2#, Beibei, 400715 Chongqing, People's Republic of China; Chongqing Key Laboratory of Crop Quality Improvement, Southwest University, Tiansheng Road 2#, Beibei, 400715 Chongqing, People's Republic of China; Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Tiansheng Road 2#, Beibei, Chongqing 400715, People's Republic of China. Electronic address:

Published: January 2017

TRANSPARENT TESTA1 (TT1) is a zinc finger protein that contains a WIP domain. It plays important roles in controlling differentiation and pigmentation of the seed coat endothelium, and can affect the expression of early biosynthetic genes and late biosynthetic genes of flavonoid biosynthesis in Arabidopsis thaliana. In Brassica napus (AACC, 2n=38), the functions of BnTT1 genes remain unknown and few studies have focused on their roles in fatty acid (FA) biosynthesis. In this study, BnTT1 family genes were silenced by RNA interference, which resulted in yellow rapeseed, abnormal testa development (a much thinner testa), decreased seed weight, and altered seed FA composition in B. napus. High-throughput sequencing of genes differentially expressed between developing transgenic B. napus and wild-type seeds revealed altered expression of numerous genes involved in flavonoid and FA biosynthesis. As a consequence of this altered expression, we detected a marked decrease of oleic acid (C18:1) and notable increases of linoleic acid (C18:2) and α-linolenic acid (C18:3) in mature transgenic B. napus seeds by gas chromatography and near-infrared reflectance spectroscopy. Meanwhile, liquid chromatography-mass spectrometry showed reduced accumulation of flavonoids in transgenic seeds. Therefore, we propose that BnTT1s are involved in the regulation of flavonoid biosynthesis, and may also play a role in FA biosynthesis in B. napus.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plantsci.2016.10.012DOI Listing

Publication Analysis

Top Keywords

flavonoid biosynthesis
16
bntt1 family
8
family genes
8
fatty acid
8
brassica napus
8
biosynthetic genes
8
transgenic napus
8
altered expression
8
genes
7
biosynthesis
6

Similar Publications

p-Coumaric acid (p-CA), an invaluable phytochemical, has novel bioactivities, including antiproliferative, anxiolytic, and neuroprotective effects, and is the main precursor of various flavonoids, such as caffeic acid, naringenin, and resveratrol. Herein, we report the engineering of Escherichia coli for de novo production of p-CA via the PAL-C4H pathway. As the base strain, we used the E.

View Article and Find Full Text PDF

Gallbladder cancer is the most prevalent malignancy of the biliary tract and has a dismal overall survival even in the present day. The development of new drugs holds promise for improving the prognosis of this lethal disease. The possible anti-neoplastic role of morusin was investigated both in vitro and in vivo.

View Article and Find Full Text PDF

Flavonoid-rich extract of Paederia scandens (Lour.) Merrill improves hyperuricemia by regulating uric acid metabolism and gut microbiota.

Food Chem

January 2025

Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China. Electronic address:

Paederia scandens (Lour.) Merrill flavonoid-rich extract (PSMF) has shown excellent xanthine oxidase (XOD) inhibitory activity in our previous study. However, the efficacy of PSMF in mitigating hyperuricemia (HUA) remains to be elucidated.

View Article and Find Full Text PDF

ACC treatment induced alterations in flavonoid accumulation in Toxicodendron vernicifluum.

Plant Physiol Biochem

January 2025

Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi'an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi'an, 710061, China. Electronic address:

Lacquer tree (Toxicodendron vernicifluum) is an important economic crop and is rich in flavonoids. ACC (1-aminocyclopropane-1-carboxylic acid) is the precursor to ethylene. ACC treatment can induce physiological and biochemical responses in plants.

View Article and Find Full Text PDF

In vivo Differential Effects of Extractable and Non-Extractable Phenolic Compounds from Grape Pomace on the Regulation of Obesity and Associated Metabolic Alterations.

Plant Foods Hum Nutr

January 2025

Departamento de Investigación y Posgrado en Alimentos, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Qro., 76010, México.

Grape pomace (GP) is a by-product rich in phytochemicals, including extractable polyphenols (EPPs) and non-extractable polyphenols (NEPPs), which have distinct metabolic fates that may affect their biological activities. The benefits of GP have been reported in relation to obesity and its comorbidities, particularly when administered preventively focusing on EPPs. Therefore, the aim of this study was to investigate the effects of EPPs and NEPPs from GP as a treatment for obesity and its associated metabolic alterations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!