Background: Deficits in cholinergic neurotransmission due to the degeneration of cholinergic neurons in the brain are believed to be one of the major causes of the memory impairments associated with AD. Targeting acetyl cholinesterase (AChE) surfaced as a potential therapeutic target in the treatment of Alzheimer's disease. The present study is pursued to develop quantitative structure activity relationship (QSAR) models to determine chemical descriptors responsible for AChE activity.
Methods: Two different sets of AChE inhibitors, dataset-I (30 compounds) and dataset-II (20 compounds) were investigated through MLR aided linear and SVM aided non-linear QSAR models.
Results: The obtained QSAR models were found statistically fit, stable and predictive on validation scales. These QSAR models were further investigated for their common structure-activity relationship in terms of overlapping molecular descriptors selection. Atomic mass weighted 3D Morse descriptors (MATS5m) and Radial Distribution Function (RDF045m) descriptors were found in common SAR for both the datasets. Electronegativity weighted (MATS5e, HATSe, and Mor17e) descriptors have also been identified in regulative roles towards endpoint values of dataset-I and dataset-II.
Conclusion: The common SAR identified in these linear and non-linear QSAR models could be utilized to design novel inhibitors of AChE with improved biological activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5725541 | PMC |
http://dx.doi.org/10.2174/1570159X14666161213142841 | DOI Listing |
J Environ Manage
January 2025
Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, School of Life Science, Jinggangshan University, Ji'an, 343009, China. Electronic address:
Sulfonamide antibiotics (SAs) are widely used in the biomedical field but pose an environmental risk as ecotoxic pollutants. Developing eco-friendly methods to degrade SAs into harmless compounds is crucial. In this work, biochar (BC) was prepared from rice straw via pyrolysis and used to support S-nZVI, thereby forming the S-nZVI/BC composites.
View Article and Find Full Text PDFSci Rep
January 2025
Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700 032, India.
We have adopted the classification Read-Across Structure-Activity Relationship (c-RASAR) approach in the present study for machine-learning (ML)-based model development from a recently reported curated dataset of nephrotoxicity potential of orally active drugs. We initially developed ML models using nine different algorithms separately on topological descriptors (referred to as simply "descriptors" in the subsequent sections of the manuscript) and MACCS fingerprints (referred to as "fingerprints" in the subsequent sections of the manuscript), thus generating 18 different ML QSAR models. Using the chemical spaces defined by the modeling descriptors and fingerprints, the similarity and error-based RASAR descriptors were computed, and the most discriminating RASAR descriptors were used to develop another set of 18 different ML c-RASAR models.
View Article and Find Full Text PDFCurr Top Med Chem
January 2025
Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India.
Background: Several chemical studies described the physiological efficacy of 1,4- dihydropyridines (DHPs). DHPs bind to specific sites on the α1 subunit of L-type calcium channels, where they demonstrate a more pronounced inhibition of Ca2+ influx in vascular smooth muscle compared to myocardial tissue. This selective inhibition is the basis for their preferential vasodilatory action on peripheral and coronary arteries, a characteristic that underlies their therapeutic utility in managing hypertension and angina.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pesticide Chemistry, National Research Centre, Dokki, 12622, Giza, Egypt.
Targeted therapy is preferable over other therapeutics due to its limitation of drawbacks and better pharmaceutical outcomes. VEGF and its receptors have been observed to be hyper-activated in many cancer types and are considered promising targets for assigning anticancer agents. The current study is directed towards synthesis of novel antiproliferative 2-oxoindolin-3-ylidenes incorporating urea function with VEGFR-2 properties.
View Article and Find Full Text PDFBMC Chem
January 2025
Department of Electrical Engineering, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia.
Multiple sclerosis (MS) is a complex autoimmune disease of the central nervous system with an unknown etiology. While disease-modifying therapies can slow progression, there is a need for more effective treatments. Quantitative structure-activity relationship (QSAR) modeling using topological indices derived from chemical graph theory is a promising approach to rationally design new drugs for MS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!