Wnt/β-catenin signaling is an evolutionarily conserved pathway that has a crucial role in embryonic and adult life. Dysregulation of Wnt/β-catenin pathway has been associated with various diseases, including cancer and neurodegenerative disorders, including Parkinson's disease (PD). Several molecular components of the signaling have been proposed as innovative targets for cancer therapy, and very recently, some of them have been also evaluated as potential therapeutic targets for PD. Areas covered: This review focuses on the role of Wnt/β-catenin pathway in the pathogenensis of cancer and PD, examining some recent therapeutic approaches that are ongoing in preclinical and clinical studies. The possibilities that this signaling offers for diagnosis and prognosis of neoplastic diseases, and the concerns of targeting this pathway are also discussed. Expert opinion: Despite the stimulating results obtained in preclinical studies on cancer and other disease models, the clinical experience with Wnt modulators is still in its infancy, and is mainly restricted to anticancer therapy. Even with concerns of the safety of drugs targeting Wnt signaling, the attention of researchers worldwide is increasing to this issue in terms of their therapeutic potential for diseases such as PD, for which no cure exists.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/17460441.2017.1271321 | DOI Listing |
Sci Rep
December 2024
Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA.
Exposure to reactive oxygen species (ROS) can induce DNA-protein crosslinks (DPCs), unusually bulky DNA lesions that block replication and transcription and play a role in aging, cancer, cardiovascular disease, and neurodegenerative disorders. Repair of DPCs depends on the coordinated efforts of proteases and DNA repair enzymes to cleave the protein component of the lesion to smaller DNA-peptide crosslinks which can be processed by tyrosyl-DNA phosphodiesterases 1 and 2, nucleotide excision and homologous recombination repair pathways. DNA-dependent metalloprotease SPRTN plays a role in DPC repair, and SPRTN-deficient mice exhibit an accelerated aging phenotype and develop liver cancer early in life.
View Article and Find Full Text PDFJ Funct Biomater
December 2024
Cardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
Reactive oxygen species (ROS) are generated predominantly during cellular respiration and play a significant role in signaling within the cell and between cells. However, excessive accumulation of ROS can lead to cellular dysfunction, disease progression, and apoptosis that can lead to organ dysfunction. To overcome the short half-life of ROS and the relatively small amount produced, various imaging methods have been developed, using both endogenous and exogenous means to monitor ROS in disease settings.
View Article and Find Full Text PDFMar Drugs
December 2024
Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, Kavala University Campus, St. Lucas, 65404 Kavala, Greece.
Marine animals, especially shrimp species, have gained interest in research, due to the fact that they contain a plethora of biomolecules, specifically lipids, which have been proven to possess many health benefits in various diseases linked to chronic inflammation or other exogenous factors. This review refers to the lipid composition of a large number of shrimp species, as well as the effects that can alternate the lipid content of these crustaceans. Emphasis is given to the potent anti-inflammatory, antioxidant, and antithrombotic properties of shrimp bioactives, as well as the effects that these bioactives hold in other diseases, such as cancer, diabetes, neurodegenerative disorders, and more.
View Article and Find Full Text PDFCurr Issues Mol Biol
December 2024
Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland.
Misshapen/NIKs-related kinase (MINK) 1 belongs to the mammalian germinal center kinase (GCK) family. It contains the N-terminal, conserved kinase domain, a coiled-coil region, a proline-rich region, and a GCK, C-terminal domain with the Citron-NIK-Homology (CNH) domain. The kinase is an essential component of cellular signaling pathways, which include Wnt signaling, JNK signaling, pathways engaging Ras proteins, the Hippo pathway, and STRIPAK complexes.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China.
Simultaneous monitoring of antimicrobial responses to bacterial metabolic activity and biofilm formation is critical for efficient screening of new anti-biofilm drugs. A microbial fuel cell-based biosensor using as an electricigen was constructed. The effects of silver nanoparticles (AgNPs) on the cellular metabolic activity and biofilm formation of in the biosensors were investigated and compared with the traditional biofilm detection method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!