Double-network (DN) hydrogels with high strength and toughness have been developed as promising materials. Herein, we explored a dual physically cross-linked polyacrylamide/xanthan gum (PAM/XG) DN hydrogel. The nonchemically cross-linked PAM/XG DN hydrogels exhibited fracture stresses as high as 3.64 MPa (13 times higher than the pure PAM single network hydrogel) and compressive stresses at 99% strain of more than 50 MPa. The hydrogels could restore their original shapes after continuously loading-unloading tensile and compressive cyclic tests. In addition, the PAM/XG DN hydrogels demonstrated excellent fatigue resistance, notch-insensitivity, high stability in different harsh environments, and remarkable self-healing properties, which might result from their distinctive physical-cross-linking structures. The attenuated total reflectance infrared spectroscopy (ATR-IR) and dynamic thermogravimetric analysis (TGA) results indicated that there were no chemical bonds (only hydrogen bonds) between the XG and PAM networks. The PAM/XG DN hydrogel synthesis offers a new avenue for the design and construction of DN systems, broadening current research and applications of hydrogels with excellent mechanical properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.6b12243 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!