Linear and hyperbranched poly(ethylene glycol)-cross-linked amphiphilic fluoropolymer networks comprised of different liquid crystalline comonomers were developed and evaluated as functional coatings in extreme weather-challenging conditions. Through variation of the liquid-crystalline comonomer and hydrophilic:hydrophobic component ratios, several series of coatings were synthesized and underwent a variety of analyses including differential scanning calorimetry, water contact angle measurements and solution stability studies in aqueous media. These materials maintained an unprecedented reduction in the free water melting transition (T) temperature across the hyperbranched and linear versions. The coatings synthesized from hyperbranched fluoropolymers preserved the liquid crystalline character of the mesogenic components, as seen by polarized optical microscopy, and demonstrated stability in saltwater aqueous environments and in cold weather conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.6b11112 | DOI Listing |
Materials (Basel)
December 2024
Jingdezhen Ceramic Research Institute, Jingdezhen 333001, China.
The Guangyuan kiln, located in the Sichuan Province, Southwest China during the Song Dynasty (960-1279 A.D.), is renowned for its high-temperature iron-series glazed wares, including pure black glazed ware, hare's fur glazed ware, glossy brown glazed ware, and matte brown glazed ware.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China.
In this study, molecular dynamics (MD) simulations were employed to compare the effects of different solidification conditions on the solidification behaviour, stress distribution, and degree of crystallization of iron. The results indicate significant differences in nucleation and microstructural evolution between the two solidification methods. In the homogeneous temperature field, the solidification of iron is characterized by instantaneous nucleation.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, 700487 Iasi, Romania.
The locomotion of various organisms relies on the alternated elongation-contraction of their muscles or bodies. Such biomimicry can offer a promising approach to developing soft robotic devices with improved mobility and efficiency. Most strategies to mimic such motions rely on reversible size modifications of some materials upon exposure to external stimuli.
View Article and Find Full Text PDFACS Omega
December 2024
Department of Physics, School of Advanced Sciences, Vellore Institute of Technology (VIT) Chennai, Vandalur - Kelambakkam Road, Chennai 600127, India.
Small
January 2025
Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!