Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ultrathin noble metal nanosheets with atomic thickness exhibit abnormal electronic, surfacial, and photonic properties due to the unique two-dimensional (2D) confinement effect, which have attracted intensive research attention in catalysis/electrocatalysis. In this work, the well-defined ultrathin Rh nanosheet nanoassemblies with dendritic morphology are synthesized by a facile hydrothermal method with assistance of poly(allylamine hydrochloride) (PAH), where PAH effectively acts as the complexant and shape-directing agent. Transmission electron microscopy and atomic force microscopy images reveal the thickness of 2D Rh nanosheet with (111) planes is only ca. 0.8-1.1 nm. Nitrogen adsorption-desorption measurement displays the specific surface area of the as-prepared ultrathin Rh nanosheet nanoassemblies is 139.4 m g, which is much bigger than that of homemade Rh black (19.8 m g). Detailed catalytic investigations display the as-prepared ultrathin Rh nanosheet nanoassemblies have nearly 20.4-fold enhancement in mass-activity for the hydrolysis of ammonia borane as compared with homemade Rh black.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.6b11210 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!