Ruthenium-Catalyzed Azide Alkyne Cycloaddition Reaction: Scope, Mechanism, and Applications.

Chem Rev

Chemistry and Biochemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Göteborg, Sweden.

Published: December 2016

The ruthenium-catalyzed azide alkyne cycloaddition (RuAAC) affords 1,5-disubstituted 1,2,3-triazoles in one step and complements the more established copper-catalyzed reaction providing the 1,4-isomer. The RuAAC reaction has quickly found its way into the organic chemistry toolbox and found applications in many different areas, such as medicinal chemistry, polymer synthesis, organocatalysis, supramolecular chemistry, and the construction of electronic devices. This Review discusses the mechanism, scope, and applications of the RuAAC reaction, covering the literature from the last 10 years.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.chemrev.6b00466DOI Listing

Publication Analysis

Top Keywords

ruthenium-catalyzed azide
8
azide alkyne
8
alkyne cycloaddition
8
ruaac reaction
8
reaction
4
cycloaddition reaction
4
reaction scope
4
scope mechanism
4
mechanism applications
4
applications ruthenium-catalyzed
4

Similar Publications

Click chemistry is a powerful molecular assembly strategy for rapid functional discovery. The development of click reactions with new connecting linkage is of great importance for expanding the click chemistry toolbox. We report the first selenium-nitrogen exchange (SeNEx) click reaction between benzoselenazolones and terminal alkynes (Se-N to Se-C), which is inspired by the biochemical SeNEx between Ebselen and cysteine (Cys) residue (Se-N to Se-S).

View Article and Find Full Text PDF

Chiral-at-Ruthenium Catalysts for Nitrene-Mediated Asymmetric C-H Functionalizations.

Acc Chem Res

May 2023

Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein Straße 4, 35043 Marburg, Germany.

ConspectusAsymmetric transition metal catalysis is an indispensable tool used both in academia and industry for forging chiral molecules in an enantioselective fashion. Its advancement relies in large part on the design and discovery of new chiral catalysts. In contrast to conventional endeavors of generating chiral transition metal catalysts from carefully tailored chiral ligands, the development of chiral transition metal catalysts containing solely achiral ligands (chiral-at-metal catalysts) has been neglected.

View Article and Find Full Text PDF

Ruthenium(II) alkyne azide cycloaddition (RuAAC) is an attractive reaction to access 1,5-triazole derivatives and is applicable to internal alkynes. Here, we explore RuAAC to introduce molecular diversity on the diazabicyclooctane (DBO) scaffold of β-lactamase inhibitors. The methodology presented is fully regioselective and enabled synthesis of a series of 1,5-triazole DBOs and trisubstituted analogues.

View Article and Find Full Text PDF

Synthesis of a tricyclic hexapeptide -via two consecutive ruthenium-catalyzed macrocyclization steps- with a constrained topology to mimic vancomycin's binding properties toward D-Ala-D-Ala dipeptide.

Bioorg Med Chem Lett

October 2022

Division of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, P. O. Box 80082, 3508 TB Utrecht, The Netherlands; School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow G12 8QQ, United Kingdom; Maastricht University, Faculty of Medicine, Cardiovascular Research Institute Maastricht, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands. Electronic address:

A ring-closing metathesis (RCM) - peptide coupling - ruthenium-catalyzed azide alkyne cycloaddition (RuAAC) strategy was developed to synthesize a tricyclic hexapeptide in which the side chain to side chain connectivity pattern resulted in a mimic with a topology that effectively mimics the bioactivity of vancomycin as a potent binder of the bacterial cell wall D-Ala-D-Ala dipeptide sequence and more importantly being an effective inhibitor of bacterial growth.

View Article and Find Full Text PDF

Owing to its simplicity, selectivity, high yield, and the absence of byproducts, the "click" azide-alkyne reaction is widely used in many areas. The reaction is usually catalyzed by copper(I), which selectively produces the 1,4-disubstituted 1,2,3-triazole regioisomer. Ruthenium-based catalysts were later developed to selectively produce the opposite regioselectivity─the 1,5-disubstituted 1,2,3-triazole isomer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!