A highly sensitive fluorescent chemosensor for selective detection of zinc (II) ion based on the oxadiazole derivative.

Spectrochim Acta A Mol Biomol Spectrosc

College of Chemistry and Chemical Engineering, Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, Hubei Normal University, Huangshi 435002, China.

Published: March 2017

AI Article Synopsis

Article Abstract

A novel fluorescent chemosensor based on the oxadiazole, 2-(2-hydroxyphenyl)-5-(4-methoxyphenyl)-1,3,4-oxadiazole, was designed and synthesized. The interaction of the oxadiazole with different metal ions had been investigated through UV-vis absorption and fluorescence spectra in 9:1 (v/v) ethanol-water (pH=7.0) solution. The oxadiazole showed a pronounced fluorescence enhancement at 430nm upon addition of Zn in aqueous solution, whereas it had no apparent interference from other metal ions. The results indicated that the oxadiazole possessed high selectivity and sensitivity to Zn ion. The stoichiometric ratio between the oxadiazole and Zn ion was calculated to be 2:1 by Job plot experiment, meanwhile their binding modes was confirmed by H NMR and mass spectrometry. Their association constant was determined to be 1.95×10M and the detection limit for Zn ion was 6.14×10mol/L.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2016.11.053DOI Listing

Publication Analysis

Top Keywords

fluorescent chemosensor
8
based oxadiazole
8
metal ions
8
oxadiazole
6
highly sensitive
4
sensitive fluorescent
4
chemosensor selective
4
selective detection
4
detection zinc
4
ion
4

Similar Publications

Design and synthesis of a carbohydrate-derived chemosensor for selective Ni(II) ion detection: A turn-off approach.

Carbohydr Res

January 2025

Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India; Department of Chemistry, Ramjas College, University of Delhi, Delhi, 110007, India. Electronic address:

Nickel, an essential transition metal, plays a vital role in biological systems and industries. However, exposure to nickel can cause severe health issues, such as asthma, dermatitis, pneumonitis, neurological disorders, and cancers of the nasal cavity and lungs. Due to nickel's toxicity and extensive industrial use, efficient sensors for detecting Ni ions in environmental and biological contexts are essential.

View Article and Find Full Text PDF

CQHC, a novel colorimetric fluorescent sensor, developed for the selective sensing of ions and well characterised, including SC-XRD. It demonstrated selective sensing for Co, Zn, Hg and F using absorbance titration at 420 nm, 446 nm and the binding constants estimated follows the order F > Co > Hg > Zn. On light of this, molecular logic gate was built for CQHC's selective multi-ion detection.

View Article and Find Full Text PDF

We report a bithiophene-based fluorescence probe BDT (2,2'-(((1 E, 1'E)-[2,2'-bithiophene]-5,5'-diylbis(methaneylylidene))bis(azaneylylidene))bis(4-(tert-butyl)phenol)) for recognizing ClO. BDT selectively responded to ClO, leading to a blue fluorescence enhancement in a mixture of DMF/HEPES buffer (9:1, v/v). Importantly, BDT showed an ultrafast response (within 1 s) to ClO among the fluorescent turn-on chemosensors based on bithiophene.

View Article and Find Full Text PDF

Coumarin compounds have heterocyclic core with different properties such as high quantum yields, broad Stokes shifts, and superior photophysical and biological activity. It is known that fluorescence properties increase with increased intramolecular charge transfer in systems where electron-withdrawing or donor groups are attached to different positions of the coumarin compound. When these compounds interact with analytes in the environment, the analytes in the environment can be detected by quenching or increasing fluorescence.

View Article and Find Full Text PDF

Lead (Pb) is a highly toxic heavy metal that causes significant health hazards and environmental damage. Thus, the detection and removal of Pb ions in freshwater sources are imperative for safeguarding public health and the environment. Moreover, the transformation of single resources into multiple high-value products is vital for achieving sustainable development goals (SDGs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!