Matrine, an alkaloid component derived from the Sophora root, can inhibit cancer cell proliferation and induce autophagy via p53 associated pathways. However, numerous tumor cells lack functional p53 and little is known about the effect of matrine on the p53‑deficient/mutant cancer cells. The present study aimed to assess anticancer effects of matrine in p53‑deficient human Hep3B hepatoma cells. The present results demonstrated that matrine caused Hep3B cell apoptosis by suppressing gene expression of minute double‑mutant (MDM)2. Notably, it was revealed that matrine inhibited MDM2 at the transcriptional level in a time‑ and dose‑dependent manner. This MDM2 inhibition resulted in induction of the p53 family member, p73; however, the functions of p73 were not induced since matrine‑induced p73 failed to activate its target genes, p21 and p53 upregulated modulator of apoptosis. The matrine‑induced downregulation of MDM2 led to an inhibition of inhibitor of apoptosis protein 3, which might serve a critical role in matrine‑induced apoptosis in MDM2‑overexpressing Hep3B cells. Finally, combination therapy of matrine with 100 µM epotoside successfully killed more Hep3B cells, suggesting that matrine can sensitize p53‑deficient Hep3B cells to epotoside‑induced apoptosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3892/mmr.2016.5999 | DOI Listing |
Toxicology
January 2025
Department of Pharmacology, Shantou University Medical College, Shantou 515041, China. Electronic address:
Aflatoxin B1 (AFB1) has been reported to synergize with hepatitis B virus (HBV) to induce development of hepatocellular carcinoma (HCC). Precise daily exposure to AFB1 and its contribution to liver injury have not been quantified and have even been disregarded due to lack of convenient detection, and the strong species specificity of HBV infection has restricted research on their synergistic harm. Hence, our objective was to investigate the molecular mechanisms by which AFB1 exacerbates HBV-related injury.
View Article and Find Full Text PDFMol Cancer
January 2025
Department of Cell Biology, Physiology, and Immunology, University of Córdoba, CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, 14004, Spain.
Background: Hepatocellular carcinoma (HCC) genetic/transcriptomic signatures have been widely described. However, its proteomic characterization is incomplete. We performed non-targeted quantitative proteomics of HCC samples and explored its clinical, functional, and molecular consequences.
View Article and Find Full Text PDFAm J Hematol
January 2025
Keros Therapeutics, Lexington, Massachusetts, USA.
Patients with chronic inflammation are burdened with anemia of inflammation (AI), where inflammatory cytokines inhibit erythropoiesis, impede erythropoietin production, and limit iron availability by inducing the iron regulator hepcidin. High hepcidin hinders iron absorption and recycling, thereby worsening the impaired erythropoiesis by restricting iron availability. AI management is important as anemia impacts quality of life and potentially affects morbidity and mortality.
View Article and Find Full Text PDFFitoterapia
January 2025
Department of Pharmacognosy, Faculty of Pharmacy, Yeditepe University, TR-34755, Kayışdağı, İstanbul, Türkiye. Electronic address:
As a result of anti-inflammatory activity-guided fractionation, 16 secondary metabolites from the underground parts of Valeriana phu L. were obtained, including five new ones belonging to iridoid (1, 2, and 5), phenylpropanoid (6) and neolignan (7) chemical classes. Their structures were elucidated by 1D and 2D NMR analyses as well as HRESIMS.
View Article and Find Full Text PDFComput Biol Chem
December 2024
Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea. Electronic address:
Clinical observations indicate a pronounced exacerbation of Cardiovascular Diseases (CVDs) in individuals grappling with Alcohol Use Disorder (AUD), suggesting an intricate interplay between these maladies. Pinpointing shared risk factors for both conditions has proven elusive. To address this, we pioneered a sophisticated bioinformatics framework and network-based strategy to unearth genes exhibiting aberrant expression patterns in both AUD and CVDs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!