PINK1 signaling in mitochondrial homeostasis and in aging (Review).

Int J Mol Med

Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya, Nishimachi, Nara 630-8506, Japan.

Published: January 2017

Mitochondrial dysfunction is involved in the pathology of Parkinson's disease, an age-associated neurodegenerative disorder. Phosphatase and tensin homolog (PTEN)-induced putative kinase protein 1 (PINK1) is responsible for the most common form of recessive Parkinson's disease. PINK1 is a mitochondrial kinase that is involved in mitrochondrial quality control and promotes cell survival. PINK1 has been shown to protect against neuronal cell death induced by oxidative stress. Accordingly, PINK1 deficiency is associated with mitochondrial dysfunction as well as increased oxidative cellular stress and subsequent neuronal cell death. In addition, several mitochondrial chaperone proteins have been shown to be substrates of the PINK1 kinase. In this review, we discuss recent studies concerning the signaling cascades and molecular mechanisms involved in the process of mitophagy, which is implicated in neurodegeneration and in related aging associated with oxidative stress. Particular attention will be given to the molecular mechanisms proposed to explain the effects of natural compounds and/or food ingredients against oxidative stress. Knowledge of the molecular mechanisms involved in this cellular protection could be critical for developing treatments to prevent and control excessive progression of neurodegenerative disorders.

Download full-text PDF

Source
http://dx.doi.org/10.3892/ijmm.2016.2827DOI Listing

Publication Analysis

Top Keywords

oxidative stress
12
molecular mechanisms
12
mitochondrial dysfunction
8
parkinson's disease
8
neuronal cell
8
cell death
8
mechanisms involved
8
pink1
5
mitochondrial
5
pink1 signaling
4

Similar Publications

Aims: This study aimed to develop Imatinib Mesylate (IMT)-loaded Poly Lactic-co-Glycolic Acid (PLGA)-D-α-tocopheryl polyethylene glycol succinate (TPGS)- Polyethylene glycol (PEG) hybrid nanoparticles (CSLHNPs) with optimized physicochemical properties for targeted delivery to glioblastoma multiforme.

Background: Glioblastoma multiforme (GBM) is the most destructive type of brain tumor with several complications. Currently, most treatments for drug delivery for this disease face challenges due to the poor blood-brain barrier (BBB) and lack of site-specific delivery.

View Article and Find Full Text PDF

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) encompass various etiologies and are distinguished by the onset of acute pulmonary inflammation and heightened permeability of the pulmonary vasculature, often leading to substantial morbidity and frequent mortality. There is a scarcity of viable approaches for treating effectively. In recent decades, acupuncture has been proven to be antiinflammatory.

View Article and Find Full Text PDF

Background: Morphine, a mu-opioid receptor (MOR) agonist commonly utilized in clinical settings alongside chemotherapy to manage chronic pain in cancer patients, has exhibited contradictory effects on cancer, displaying specificity toward certain cancer types and doses.

Objective: The aim of this study was to conduct a systematic assessment and comparison of the impacts of morphine on three distinct cancer models in a preclinical setting.

Methods: Viability and apoptosis assays were conducted on a panel of cancer cell lines following treatment with morphine, chemotherapy drugs alone, or their combination.

View Article and Find Full Text PDF

Enhancing metformin efficacy with cholecalciferol and taurine in diabetes therapy: Potential and limitations.

World J Diabetes

January 2025

Department of Anatomy, Division of Human Biology, School of Medicine, IMU University, Kuala Lumpur 57000, Malaysia.

Diabetes mellitus, particularly type 2 diabetes mellitus (T2DM), poses a significant global health challenge. Traditional management strategies primarily focus on glycemic control; however, there is a growing need for comprehensive approaches addressing the complex pathophysiology of diabetes complications. The recent study by Attia explores the potential of a novel therapy combining metformin with cholecalciferol (vitamin D3) and taurine to mitigate T2DM-related complications in a rat model.

View Article and Find Full Text PDF

Background: Diabetes has a substantial impact on public health, highlighting the need for novel treatments. Ubiquitination, an intracellular protein modification process, is emerging as a promising strategy for regulating pathological mechanisms. We hypothesize that ubiquitination plays a critical role in the development and progression of diabetes and its complications, and that understanding these mechanisms can lead to new therapeutic approaches.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!