A 9.3dB improvement in optical gain and a 100x improvement in total optical power over prior published experimental results from the F to I transition in an Nd doped fused silica optical fiber is demonstrated. This is enabled via an optical fiber waveguide design that creates high spectral attenuation in the 1050-1120nm-wavelength range, a continuous spectral filter for the primary F to I optical transition. A maximum output power at 1427nm of 1.2W was attained for 43mW coupled seed laser power and 22.2W of coupled pump diode laser power at 880nm a net optical gain of 14.5dB. Reducing the coupled seed laser power to 2.5mW enabled the system to attain 19.3dB of gain for 16.5W of coupled pump power. Four issues limited results; non-optimal seed laser wavelength, amplified spontaneous emission on the F to I optical transition, low absorption of pump light from the cladding and high spectral attenuation in the 1350-1450nm range. Future fibers that mitigate these issues should lead to significant improvements in the efficiency of the laser amplifier, though the shorter wavelength region of the transition from 1310nm to >1350nm is still expected to be limited by excited state absorption.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.24.029138 | DOI Listing |
Eur J Neurol
January 2025
Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine Berlin and Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
Background: Hyperreflective retinal foci (HRF) visualized by optical coherence tomography (OCT) potentially represent clusters of microglia. We compared HRF frequencies and their association with retinal neurodegeneration between people with clinically isolated syndrome (pwCIS), multiple sclerosis (pwMS), aquaporin 4-IgG positive neuromyelitis optica spectrum disorder (pwNMOSD), and healthy controls (HC)-as well as between eyes with (ONeyes) and without a history of optic neuritis (ONeyes).
Methods: Cross-sectional data of pwCIS, pwMS, and pwNMOSD with previous ON and HC were acquired at Charité-Universitätsmedizin Berlin.
Nat Protoc
January 2025
Wyant College of Optical Sciences, The University of Arizona, Tucson, AZ, USA.
Sensitive, rapid and label-free biochemical sensors are needed for many applications. In this protocol, we describe biochemical detection using FLOWER (frequency locked optical whispering evanescent resonator)-a technique that we have used to detect single protein molecules in aqueous solution as well as exosomes, ribosomes and low part-per-trillion concentrations of volatile organic compounds. Whispering gallery mode microtoroid resonators confine light for extended time periods (hundreds of nanoseconds).
View Article and Find Full Text PDFSci Rep
January 2025
Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran.
A localized surface plasmon resonance (LSPR) sensor based on tapered optical fiber (TOF) using hollow gold nanoparticles (HAuNPs) for measuring the refractive index (RI) is presented. This optical fiber sensor is a good candidate for a label-free RI biosensor. In practical biosensors, bioreceptors are immobilized on nanoparticles (NPs) that only absorb specific biomolecules.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Mathematics, Pabna University of Science and Technology, Pabna, 6600, Bangladesh.
This research used a modified and extended auxiliary mapping method to examine the optical soliton solutions of the truncated time M-fractional paraxial wave equation. We employed the truncated time M-fractional derivative to eliminate the fractional order in the governing model. The few optical wave examples of the paraxial wave condition can assume an insignificant part in depicting the elements of optical soliton arrangements in optics and photonics for the investigation of different actual cycles, including the engendering of light through optical frameworks like focal points, mirrors, and fiber optics.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Millimeter Waves, School of Information Science and Engineering, Southeast University, Nanjing, China.
Microwave-optical interaction and its effective utilization are vital technologies at the frontier of classical and quantum sciences for communication, sensing, and imaging. Typically, state-of-the-art microwave-to-optical converters are realized by fiber and circuit approaches with multiple processing steps, and external powers are necessary, which leads to many limitations. Here, we propose a programmable metasurface that can achieve direct and high-speed free-space microwave-to-laser conversion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!