A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

High-throughput time-stretch imaging flow cytometry for multi-class classification of phytoplankton. | LitMetric

Time-stretch imaging has been regarded as an attractive technique for high-throughput imaging flow cytometry primarily owing to its real-time, continuous ultrafast operation. Nevertheless, two key challenges remain: (1) sufficiently high time-stretch image resolution and contrast is needed for visualizing sub-cellular complexity of single cells, and (2) the ability to unravel the heterogeneity and complexity of the highly diverse population of cells - a central problem of single-cell analysis in life sciences - is required. We here demonstrate an optofluidic time-stretch imaging flow cytometer that enables these two features, in the context of high-throughput multi-class (up to 14 classes) phytoplantkton screening and classification. Based on the comprehensive feature extraction and selection procedures, we show that the intracellular texture/morphology, which is revealed by high-resolution time-stretch imaging, plays a critical role of improving the accuracy of phytoplankton classification, as high as 94.7%, based on multi-class support vector machine (SVM). We also demonstrate that high-resolution time-stretch images, which allows exploitation of various feature domains, e.g. Fourier space, enables further sub-population identification - paving the way toward deeper learning and classification based on large-scale single-cell images. Not only applicable to biomedical diagnostic, this work is anticipated to find immediate applications in marine and biofuel research.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.24.028170DOI Listing

Publication Analysis

Top Keywords

time-stretch imaging
16
imaging flow
12
flow cytometry
8
classification based
8
high-resolution time-stretch
8
imaging
5
time-stretch
5
high-throughput time-stretch
4
cytometry multi-class
4
classification
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!