A tri-band transparent conductive indium tin oxide (InO:Sn, ITO) film for the visible, near-infrared (NIR) and mid-infrared (MIR) was deposited on a sapphire substrate by radio frequency (RF) magnetron sputtering. Deposition parameters, including RF power, substrate temperature, and oxygen flow rate, were optimized to improve the optical property without reducing the conductivity of the film by maximizing the Hall mobility and minimizing the carrier concentration. Films deposited at optimized conditions exhibit a Hall mobility of ∼20  cm V s, a carrier concentration of ∼4.99×10  cm, and a sheet resistance of 61.2  Ω/sq. Average transmissions of these films are 81.40% in the 0.4-1.6 μm region and 60.81% in the 3.0-5.0 μm region. An index-matching stack of MgF was developed, improving the transmittance to 90.55% and 73.20% in the regions above, respectively. These results make ITO film a promising alternative material to conventional metal mesh for missile domes shielding electromagnetic waves.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.55.00D115DOI Listing

Publication Analysis

Top Keywords

tri-band transparent
8
transparent conductive
8
indium tin
8
tin oxide
8
ito film
8
hall mobility
8
carrier concentration
8
μm region
8
conductive coating
4
coating indium
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!