The HgCdTe layers (x∼0.285 and 0.225) were grown by molecular beam epitaxy and liquid phase epitaxy, respectively, followed by the deposition of CdTe and ZnS films as barrier layers by thermal evaporation. Then, the p-on-n photodiodes were fabricated by AS ion implantation, Hg overpressure annealing, passivation, and metallization. The secondary ion mass spectrometry and transmission electron microscopy results indicate that the evaporated CdTe layer with a column structure induces the channeling effect of As ion implantation causing the device performance degradation. This effect could be suppressed by depositing a CdTe film with a layered structure through E-beam evaporation. Finally, the current-voltage (I-V) and capacitance-voltage (C-V) characteristics of these p-n junctions were estimated and analyzed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.55.00D101 | DOI Listing |
Small
January 2025
Department of Microelectronics, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, 2628 CN, The Netherlands.
Miniaturization of next-generation active neural implants requires novel micro-packaging solutions that can maintain their long-term coating performance in the body. This work presents two thin-film coatings and evaluates their biostability and in vivo performance over a 7-month animal study. To evaluate the coatings on representative surfaces, two silicon microchips with different surface microtopography are used.
View Article and Find Full Text PDFBiomater Sci
January 2025
Biotechnology Centre, The Silesian University of Technology, B. Krzywoustego 8, 44-100, Gliwice, Poland.
Metallic biomaterials are extensively used in orthopedics and dentistry, either as implants or coatings. In both cases, metal ions come into contact with surrounding tissues causing a particular cell response. Here, we present a biofabricated tissue model, consisting of a hydrogel reinforced with a melt electrowritten mesh, to study the effects of bound and released metal ions on surrounding cells embedded in a hydrogel matrix.
View Article and Find Full Text PDFActa Biomater
January 2025
MATEIS, UMR CNRS 5510, INSA, FR- 7 Avenue Jean Capelle, 69621 Villeurbanne cedex, France. Electronic address:
The present study investigated the in vivo aging of yttria-stabilized zirconia (YSZ) oral implants (ZiUnite®) removed after 37 to 181 months. These implants featured a porous zirconia surface to enhance osseointegration. They were placed in prospective clinical investigations and had to be explanted due to peri-implant bone breakdown.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
January 2025
State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China; Jiangxi Province Key Laboratory of Additive Manufacturing of Implantable Medical Device, Jiangxi University of Science and Technology, Nanchang 330013, China. Electronic address:
Electrical stimulation displayed tremendous potential in promoting nerve regeneration. However, the current electrical stimulation therapy required complex traversing wires and external power sources, which significantly limited its practical application. Herein, a self-powered nerve scaffold based on primary battery principle was gradient printed by laser additive manufacturing technique.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
The involvement of neurons in the peripheral nervous system is crucial for bone regeneration. Mimicking extracellular matrix cues provides a more direct and effective strategy to regulate neuronal activity and enhance bone regeneration. However, the simultaneous coupling of the intrinsic mechanical-electrical microenvironment of implants to regulate innervated bone regeneration has been largely neglected.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!