In the last decade, the transport of intensity has been increasingly used in microscopy, wavefront sensing, and metrology. In this study, we verify by simulation and experiment the use of the transport of intensity equation (TIE) in the accurate testing of optical aspheric surfaces. Guided by simulation results and assuming that the experimental setup parameters and the conic constants are known, one can estimate an appropriate defocusing distance Δz that leads to an accurate solution of the TIE. In this paper, this method is verified through the construction of a non-nulled experiment for testing the 2D profile of an aspheric surface. The theoretical method and experimental results are compared to validate the results. Finally, to validate the TIE methodology, the phase distribution obtained by TIE is compared with the phase distribution obtained by a Shack-Hartmann sensor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.55.010067 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!