A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Atomic-layer-deposition-assisted ZnO nanoparticles for oxide charge-trap memory thin-film transistors. | LitMetric

Atomic-layer-deposition-assisted ZnO nanoparticles for oxide charge-trap memory thin-film transistors.

Nanotechnology

Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, Yongin, Geonggi-do 17104, Korea.

Published: February 2017

ZnO nanoparticles (NPs) with monolayer structures were prepared by atomic layer deposition (ALD) to use for a charge-trap layer (CTL) for nonvolatile memory thin-film transistors (MTFTs). The optimum ALD temperature of the NP formation was demonstrated to be 160 °C. The size and areal density of the ZnO NPs was estimated to be approximately 33 nm and 4.8 × 10 cm, respectively, when the number of ALD cycles was controlled to be 20. The fabricated MTFTs using a ZnO-NP CTL exhibited typical memory window properties, which are generated by charge-trap/de-trap processes, in their transfer characteristics and the width of the memory window (MW) increased from 0.6 to 18.0 V when the number of ALD cycles increased from 5 to 30. The program characteristics of the MTFT were markedly enhanced by the post-annealing process performed at 180 °C in an oxygen ambient due to the improvements in the interface and bulk qualities of the ZnO NPs. The program/erase (P/E) speed was estimated to be 10 ms at P/E voltages of -14 and 17 V. The memory margin showed no degradation with the lapse in retention time for 2 × 10 s and after the repetitive P/E operations of 7 × 10 cycles.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/aa535dDOI Listing

Publication Analysis

Top Keywords

zno nanoparticles
8
memory thin-film
8
thin-film transistors
8
zno nps
8
number ald
8
ald cycles
8
memory window
8
memory
5
atomic-layer-deposition-assisted zno
4
nanoparticles oxide
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!