Transition-metal-oxide memristors, or resistive random-access memory (RRAM) switches, are under intense development for storage-class memory because of their favorable operating power, endurance, speed, and density. Their commercial deployment critically depends on predictive compact models based on understanding nanoscale physicochemical forces, which remains elusive and controversial owing to the difficulties in directly observing atomic motions during resistive switching, Here, using scanning transmission synchrotron X-ray spectromicroscopy to study in situ switching of hafnium oxide memristors, we directly observed the formation of a localized oxygen-deficiency-derived conductive channel surrounded by a low-conductivity ring of excess oxygen. Subsequent thermal annealing homogenized the segregated oxygen, resetting the cells toward their as-grown resistance state. We show that the formation and dissolution of the conduction channel are successfully modeled by radial thermophoresis and Fick diffusion of oxygen atoms driven by Joule heating. This confirmation and quantification of two opposing nanoscale radial forces that affect bipolar memristor switching are important components for any future physics-based compact model for the electronic switching of these devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.6b06275 | DOI Listing |
J Cardiovasc Pharmacol
January 2025
Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
Positive inotropic responses upon administration of milrinone, an inhibitor of the phosphodiesterase enzyme (PDE), involve a well-pronounced positive chronotropic effect. Here we tested whether milrinone evokes this chronotropic response solely by PDE inhibition or by a concerted action that involve additional pharmacological targets. Milrinone stimulated increases in heart rate were studied in right atrial preparations of guinea pig in the presence or absence of inhibitors of putative ancillary molecular pathways or ion channels: i.
View Article and Find Full Text PDFDokl Biochem Biophys
January 2025
Bakulev National Medical Research Center for Cardiovascular Surgery, Moscow, Russia.
The study presents a numerical parametric investigation of flow structures in channels with a longitudinal-radial profile zR = Const and a spherical dome at the base. The goal of the study was to examine the flow structures in these channels depending on the exponent N of the profile and the height of the dome, to determine the conditions that provide optimal centripetal swirling flow, analogous to blood flow in the heart chambers and major vessels. The investigation was conducted using a comparative analysis of flow structures in channel configurations zR = Const, carried out in two stages.
View Article and Find Full Text PDFClocks Sleep
December 2024
Institute of Physics, Saratov State University, Astrahanskaia, 83, Saratov 410012, Russia.
This study involved 72 volunteers divided into two groups according to the apnea-hypopnea index (AHI): AHI>15 episodes per hour (ep/h) (main group, n=39, including 28 men, median AHI 44.15, median age 47), 0≤AHI≤15ep/h (control group, n=33, including 12 men, median AHI 2, median age 28). Each participant underwent polysomnography with a recording of 19 EEG channels.
View Article and Find Full Text PDFAdv Mater
January 2025
School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou, 225009, P. R. China.
As an alternative to bulk counterparts, metal-organic framework (MOF) nanoparticles isolated within conductive mesoporous carbon matrices are of increasing interest for electrochemical applications. Although promising, a "clean" carbon surface is generally associated with poor compatibility and weak interactions with metal/ligand precursors, which leads to the growth of MOFs with inhomogeneous particle sizes on outer pore walls. Here, a general methodology for in situ synthesis of eight nanoMOF composites within mesochannels with high dispersity and stability are reported.
View Article and Find Full Text PDFHealth Inf Sci Syst
December 2025
School of Mathematics and Computing, University of Southern Queensland, 487-535 West Street, Toowoomba, QLD 4350 Australia.
Purpose: This paper aims to develop a three-dimensional (3D) Alzheimer's disease (AD) prediction method, thereby bettering current predictive methods, which struggle to fully harness the potential of structural magnetic resonance imaging (sMRI) data.
Methods: Traditional convolutional neural networks encounter pressing difficulties in accurately focusing on the AD lesion structure. To address this issue, a 3D decoupling, self-attention network for AD prediction is proposed.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!