Scope: Here we tested the hypothesis that ascorbic acid (AA) is a signaling molecule acting on stem cells via the differentiation of mesoderm derivatives, including myocytes, osteocytes, and adipocytes.
Material And Methods: Investigations used a murine embryonic stem cell line CGR8 able to differentiate into different cell types and treated or not with ascorbic acid. Differentiation was tracked mainly through cellular anatomy (including presence of beating cardiomyocytes) and expression of specific markers.
Conclusion: The study demonstrated that AA drives mesoderm-derived stem cell differentiation toward myogenesis and osteogenesis and also inhibits adipogenesis. Further experiments found that AA competes with retinoic acid (RA) to drive cell differentiation in a dose-dependent manner: AA inhibited neurogenic differentiation and stimulated myogenesis whereas RA did the reverse. The AA-dependent differentiation of embryonic stem cells was shown to involve a p38 MAPK/CREB pathway, probably stimulated by cAMP via adenylate cyclases. In addition, SVCT2, the intracellular transporter of AA, acted as a receptor. Finally, we showed that activation/repression of specific differentiation markers is associated with epigenetic changes in their associated promoters. We discuss the impact of these findings in terms of obesity and aging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mnfr.201600506 | DOI Listing |
Clin Adv Periodontics
January 2025
Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India.
Background: Surgical methods of gingival depigmentation can be challenging, particularly if the gingival phenotype is thin due to the risk of gingival recession and bone exposure. Thus, exploring alternative, non-surgical, minimally invasive treatment modalities is warranted. In dermatology, vitamin C is extensively used for depigmentation and microneedling for collagen induction, with limited literature about its usage for improving gingival esthetics.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
January 2025
Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Guwahati, India.
This study is focused on the design, synthesis, and evaluation of some sulfonamide derivatives for their inhibitory effects on human carbonic anhydrase (hCA) enzymes I, II, IX, and XII as well as for their antioxidant activity. The purity of the synthesized molecules was confirmed by the HPLC purity analysis and was found in the range of 93%-100%. The inhibition constant (K) against hCA I ranged from 0.
View Article and Find Full Text PDFSmall Methods
January 2025
Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland.
In situ monitoring is essential for catalytic process design, offering real-time insights into active structures and reactive intermediates. Electron paramagnetic resonance (EPR) spectroscopy excels at probing geometric and electronic properties of paramagnetic species during reactions. Yet, state-of-the-art liquid-phase EPR methods, like flat cells, require custom resonators, consume large amounts of reagents, and are unsuited for tracking initial kinetics or use with solid catalysts.
View Article and Find Full Text PDFPhotosynthetica
January 2025
College of Agronomy, Specialty Corn Institute, Shenyang Agricultural University, 110866 Shenyang, Liaoning Province, China.
Melatonin (MT), an indole compound, can boost plant growth under abiotic stress conditions. This experiment aims to elucidate the synergistic effect of MT and ascorbic acid (AsA) in mitigating salinity stress by assessing the photosynthetic and antioxidant capacity of the maize inbred lines H123 and W961. The results indicated that exogenous MT and AsA significantly improved photosynthetic efficiency and biomass of maize under salinity stress.
View Article and Find Full Text PDFFood Chem X
January 2025
College of Horticulture, Hebei Agricultural University, Baoding 071001, China.
Few studies have explored the impact of blue light-emitting diode (BL) irradiation combined with different storage temperatures on antioxidant defense and cell wall metabolic activities related to the quality deterioration of postharvest strawberries. This study investigates the effects of BL exposure as a non-chemical preservation strategy to improve the postharvest quality of strawberries stored at 22 °C and 8 °C. Over a 10-day storage period, BL irradiation significantly reduced respiratory and ethylene production rates, while preserving fruit firmness and increasing the contents of soluble sugar and total phenol at both temperatures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!