Blood-brain barrier and intestinal epithelial barrier alterations in autism spectrum disorders.

Mol Autism

Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, MA USA ; Center for Celiac Research and Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital for Children, Boston, MA USA ; Department of Pediatrics, Harvard Medical School, Boston, MA USA.

Published: October 2017

Background: Autism spectrum disorders (ASD) are complex conditions whose pathogenesis may be attributed to gene-environment interactions. There are no definitive mechanisms explaining how environmental triggers can lead to ASD although the involvement of inflammation and immunity has been suggested. Inappropriate antigen trafficking through an impaired intestinal barrier, followed by passage of these antigens or immune-activated complexes through a permissive blood-brain barrier (BBB), can be part of the chain of events leading to these disorders. Our goal was to investigate whether an altered BBB and gut permeability is part of the pathophysiology of ASD.

Methods: cerebral cortex and cerebellum tissues from ASD, schizophrenia (SCZ), and healthy subjects (HC) and duodenal biopsies from ASD and HC were analyzed for gene and protein expression profiles. Tight junctions and other key molecules associated with the neurovascular unit integrity and function and neuroinflammation were investigated.

Results: Claudin ()-5 and -12 were increased in the ASD cortex and cerebellum. , , and were higher in the ASD cortex. , , and were downregulated in SCZ cortex; was increased in the SCZ cerebellum. Differences between SCZ and ASD were observed for most of the genes analyzed in both brain areas. CLDN-5 protein was increased in ASD cortex and cerebellum, while CLDN-12 appeared reduced in both ASD and SCZ cortexes. In the intestine, 75% of the ASD samples analyzed had reduced expression of barrier-forming TJ components (, , ), whereas 66% had increased pore-forming CLDNs (, , ) compared to controls.

Conclusions: In the ASD brain, there is an altered expression of genes associated with BBB integrity coupled with increased neuroinflammation and possibly impaired gut barrier integrity. While these findings seem to be specific for ASD, the possibility of more distinct SCZ subgroups should be explored with additional studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5129651PMC
http://dx.doi.org/10.1186/s13229-016-0110-zDOI Listing

Publication Analysis

Top Keywords

asd
12
cortex cerebellum
12
asd cortex
12
blood-brain barrier
8
autism spectrum
8
spectrum disorders
8
increased asd
8
scz
6
cortex
5
increased
5

Similar Publications

In many bacteria, the location of the mRNA start codon is determined by a short ribosome binding site sequence that base pairs with the 3'-end of 16S rRNA (rRNA) in the 30S subunit. Many groups have changed these short sequences, termed the Shine-Dalgarno (SD) sequence in the mRNA and the anti-Shine-Dalgarno (ASD) sequence in 16S rRNA, to create "orthogonal" ribosomes to enable the synthesis of orthogonal polymers in the presence of the endogenous translation machinery. However, orthogonal ribosomes are prone to SD-independent translation.

View Article and Find Full Text PDF

Introduction: While cerebral amyloid angiopathy is likely responsible for intracerebral hemorrhage (ICH) occurring in superficial (grey matter, vermis) cerebellar locations, it is unclear whether hypertensive arteriopathy (HA), the other major cerebral small vessel disease (cSVD), is associated with cerebellar ICH (cICH) in deep (white matter, deep nuclei, cerebellar peduncle) regions. We tested the hypothesis that HA-associated neuroimaging markers are significantly associated with deep cICH compared to superficial cICH.

Patients And Methods: Brain MRI scans from consecutive non-traumatic cICH patients admitted to a referral center were analyzed for cSVD markers.

View Article and Find Full Text PDF

Abnormal resting-state brain network dynamics in toddlers with autism spectrum disorder.

Eur Child Adolesc Psychiatry

January 2025

National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance Spectroscopy and Imaging, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.

Emerging evidence suggests aberrant functional connectivity (FC) of brain networks in children, adolescents, and adults with autism spectrum disorder (ASD). However, little is known about alterations of dynamic FC in toddlers with ASD. The aim of this study was to investigate the characteristics of brain network dynamics in ASD toddlers.

View Article and Find Full Text PDF

Purpose: This study aimed to compare the incidence of radiological adjacent segment disease (R-ASD) at L3/4 between patients with L4/5 degenerative spondylolisthesis (DS) who underwent L4/5 posterior lumbar interbody fusion (PLIF) and those who underwent microscopic bilateral decompression via a unilateral approach (MBDU) at L4/5. Our ultimate goal was to distinguish the course of natural lumbar degeneration from fusion-related degeneration while eliminating L4/5 decompression as a confounder.

Methods: Ninety patients with L4/5 DS who underwent L4/5 PLIF (n = 53) or MBDU (n = 37) and were followed for at least 5 years were retrospectively analyzed.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is an early-onset neurodevelopmental disorder characterised by highly heterogeneous language abilities. These variations necessitate sensitive and comprehensive assessments, with narrative analysis being an effective method. This study aimed to examine the micro- and macrostructural aspects of narratives of Mandarin-speaking children with ASD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!