J Wave Syndrome: Clinical Diagnosis, Risk Stratification and Treatment.

J Atr Fibrillation

Division of Cardiology and Cardiac Electrophysiology, Delhi Heart and Lung Institute, New Delhi, India.

Published: December 2014

J wave syndrome has emerged from a benign electrocardiographic abnormality to a proarrythmic state and a significant cause of idiopathic ventricular fibrillation responsible for sudden cardiac death. Electrical genesis, genetics and ionic mechanisms of J wave syndromes are active areas of research. Typically two of these viz., Early repolarization syndrome (ER) and Brugada syndrome (BrS) are fairly well characterized enabling correct diagnosis in most patients. In early repolarization syndrome, J waves are seen in inferior (2,3, avF) or lateral leads (V4, V5, V6), while in Brugada syndrome they are best seen in right precordial leads (V1-V3). The first part of repolarization of ventricular myocardium is governed by Ito current i.e., rapid outward potassium current. The proposed mechanism of ventricular fibrillation (VF) and ventricular tachycardia (VT) storms is faster Ito current in the epicardium than in the endocardium resulting in electrical gradient that forms the substrate for phase 2 re-entry. Prevention of Ito current with quinidine supports this mechanism. Morphological features of benign variety of J wave syndrome and malignant/ proarrythmic variety have now been fairly well characterized. J waves are very common in young, athletes and blacks; risk stratification for VF/sudden cardiac death (SCD) is not easy. Association of both ER syndrome and Brugada syndrome with other disease states like coronary artery disease is being reported frequently. Those with ECG abnormality as the only manifestation are difficult to manage. Certain ECG patterns are more proarrythmic. Individuals resuscitated from VF definitely need an implantable cardiac defibrillator (ICD) but in others there is no consensus regarding therapy. Role of electrophysiology study to provoke ventricular tachycardia or fibrillation is not yet well defined. Radiofrequency ablation of epicardial substrate in right ventricle in Brugada syndrome is reported and is also under critical evaluation. In this review we shall discuss some interesting historical features, epidemiology, electrocardiographic features, and ionic mechanisms on pathogenesis, clinical features, risk stratification and treatment issues in J wave syndromes. Brugada syndrome is not discussed in this review.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5135207PMC
http://dx.doi.org/10.4022/jafib.1173DOI Listing

Publication Analysis

Top Keywords

brugada syndrome
20
wave syndrome
12
risk stratification
12
ito current
12
syndrome
10
stratification treatment
8
ventricular fibrillation
8
cardiac death
8
ionic mechanisms
8
wave syndromes
8

Similar Publications

Locoregional anesthesia in patients with Brugada syndrome. A retrospective database analysis.

Acta Anaesthesiol Scand

February 2025

Department of Anesthesiology and perioperative medicine, University Hospital of Brussels, Free University of Brussels, Brussels, Belgium.

Background: The use of local anesthetics (LA) in individuals with Brugada syndrome (BrS) remains a subject of debate due to the lack of large-scale studies confirming their potential risks. This study primarily aimed to evaluate the incidence of new malignant arrhythmias or defibrillation events in patients diagnosed with BrS during the perioperative period, following the administration of local anesthetics, and within 30 days postoperatively. The secondary objective was to analyze the occurrence of adverse effects during hospitalization, as well as 30-day readmission and mortality rates.

View Article and Find Full Text PDF

Background: Brugada syndrome (BrS) is a genetic heart disease that predisposes individuals to ventricular arrhythmias and sudden cardiac death. Although implantable cardioverter-defibrillators (ICDs) and quinidine are primary treatments, recurrent BrS-triggered ventricular arrhythmias can persist. In this setting, epicardial substrate ablation has emerged as a promising alternative for symptomatic patients.

View Article and Find Full Text PDF

A new hypothesis to explain disease dominance.

Trends Genet

January 2025

Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Hessen, 61231, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Hessen, 61231, Germany; Excellence Cluster Cardio-Pulmonary Institute (CPI), Bad Nauheim, Frankfurt, Giessen, Germany. Electronic address:

The onset and progression of dominant diseases are thought to result from haploinsufficiency or dominant negative effects. Here, we propose transcriptional adaptation (TA), a newly identified response to mRNA decay, as an additional cause of some dominant diseases. TA modulates the expression of so-called adapting genes, likely via mRNA decay products, resulting in genetic compensation or a worsening of the phenotype.

View Article and Find Full Text PDF

Rate dependent complete right bundle block: a challenging diagnosis in Brugada syndrome.

Eur Heart J

December 2024

Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, No. 168 of Litang Road, Beijing 102218, China.

View Article and Find Full Text PDF

Background: The ionic mechanism underlying Brugada syndrome (BrS) arises from an imbalance in transient outward current flow between the epicardium and endocardium. Previous studies report that artemisinin, originally derived from a Chinese herb for antimalarial use, inhibits the Ito current in canines. In a prior study, we showed the antiarrhythmic effects of artemisinin in BrS wedge preparation models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!