Application of transdermal reverse iontophoresis for diagnostic purpose is a relatively new concept but its short span of research is full of ups and downs. In early nineties, when the idea was floated, it received a dubious welcome by the scientific community. Yet to the disbelief of many, 2001 saw the launching of GlucoWatch® G2 Biographer, the first device that could measure the blood sugar level noninvasively. Unfortunately, the device failed to match the expectation and was withdrawn in 2007. However, the concept stayed on. Research on reverse iontophoresis has diversified in many fields. Numerous in vitro and in vivo experiments confirmed the prospect of reverse iontophoresis as a noninvasive tool in therapeutic drug monitoring and clinical chemistry. This review provides an overview about the recent developments in reverse iontophoresis in the field of therapeutic drug monitoring.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jconrel.2016.12.007 | DOI Listing |
Sensors (Basel)
November 2024
Research Unit of Electronics for Sensor Systems, Department of Engineering, University Campus Bio-Medico di Roma, 00128 Rome, Italy.
Electrical stimulation can be used in several applications such as fatigue reduction, muscle rehabilitation, neurorehabilitation, neuro-prosthesis and pain relief. Moreover, electrical stimulation can be used for drug delivery applications or body fluids extraction (e.g.
View Article and Find Full Text PDFJ Clin Med
December 2024
Operative Research Unit of Neurology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Álvaro del Portillo, 200, 00128 Rome, Italy.
Since its first introduction, levodopa has remained the cornerstone treatment for Parkinson's disease. However, as the disease advances, the therapeutic window for levodopa narrows, leading to motor complications like fluctuations and dyskinesias. Clinicians face challenges in optimizing daily therapeutic regimens, particularly in advanced stages, due to the lack of quantitative biomarkers for continuous motor monitoring.
View Article and Find Full Text PDFTalanta
February 2025
School of Marine Information Engineering, Jimei University, Xiamen, 361021, China; Fujian Provincial Key Laboratory of Oceanic Information Perception and Intelligent Processing, China.
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/policies/article-withdrawal).
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China; A Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, and with the School of Engineering Medicine, Beihang University, Beijing, 100191, China. Electronic address:
Among wearable sensing devices, electrochemical sensors are overwhelming in biochemical detection due to their simple design but high sensitivity. Most electrochemical sensors are disposable, which significantly impairs the service life. Here we present a reusable gallium (Ga)-based multilayer electrochemical glucose biosensor to extend noninvasive monitoring of glucose in the interstitial fluid.
View Article and Find Full Text PDFAdv Healthc Mater
September 2024
Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-1 Aramaki Aoba, Aoba-ku, Sendai, 980-8579, Japan.
Here, a novel porous microneedle (PMN) device with bilaterally aligned electroosmotic flow (EOF) enabling controllable dual-mode delivery of molecules is developed. The PMNs placed at anode and cathode compartments are modified with anionic poly-2-acrylamido-2-methyl-1-propanesulfonic acid and cationic poly-(3-acrylamidopropyl) trimethylammonium, respectively. The direction of EOF generated by PMN at the cathode compartment is, therefore, reversed from cathode to anode, countering the unwanted cathodal suctioning of interstitial fluid caused by reverse iontophoresis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!